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ABSTRACT
As a challenging task, unsupervised person re-identification (Re-ID)
aims to optimize the pedestrian matching model based on the unla-
beled image frames from surveillance videos. Recently, the fusion
with the spatio-temporal clues of pedestrians have been proven
effective to improve the performance of classification. However,
most of these methods adopt some hard combination approaches
by multiplying the visual scores with the spatio-temporal scores,
which are sensitive to the noise caused by imprecise estimation of
the spatio-temporal patterns in unlabeled datasets and limit the
advantage of the fusion model. In this paper, we propose a Graph
based Spatio-Temporal Fusion model for high-performance multi-
modal person Re-ID, namely G-Fusion, to mitigate the impact of
noise. In particular, we construct a graph of pedestrian images by
selecting neighboring nodes based on the visual information and
the transition time between cameras. Then we use a randomly ini-
tialized two-layer GraphSAGE model to obtain the multi-modal
affinity matrix between images, and deploy the distillation learn-
ing to optimize the visual model by learning the affinity between
the nodes. Finally, a graph-based multi-modal re-ranking method
is deployed to make the decision in the testing phase for precise
person Re-ID. Comprehensive experiments are conducted on two
large-scale Re-ID datasets, and the results show that our method
achieves a significant improvement of the performance while com-
bined with SOTA unsupervised person Re-ID methods. Specifically,
the mAP scores can reach 92.2%, and 80.4% on the Market-1501,
and MSMT17 datasets respectively.

CCS CONCEPTS
• Information systems → Specialized information retrieval.
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1 INTRODUCTION
Person re-ID aims to capture the images containing the same person
across different camera views [26, 41]. Recently, supervised person
Re-ID algorithms [14, 29, 40] have made significant progress, but
they rely on large and expensive annotated datasets. Consequently,
an increasing number of researchers are turning to unsupervised
Re-ID [5, 23, 27], which is more applicable to real-world scenarios
with tremendous unlabeled image frames from surveillance videos.

Most existing unsupervised person Re-ID methods adopt pseudo
label techniques [5, 18, 35], which apply clustering methods (such
as DBSCAN [4]) on unlabeled data in the target domain to generate
pseudo labels, resulting in significant performance gains. However,
these methods heavily rely on carefully configured clustering hyper-
parameters and require fine-tuning to achieve desirable results.
Additionally, some methods use Generative Adversarial Networks
(GAN) to reduce the domain shift caused by the diverse visual styles
in different datasets [32, 42, 43].

Besides above pure visual Re-ID models, some multi-modal meth-
ods have been proposed to utilize the spatio-temporal pattern of
pedestrians to further enhance the Re-ID performance. In partic-
ular, TFusion [21] adopted the Bayesian fusion to combine the
spatio-temporal transition probabilities and visual scores, and used
the fusion scores for evaluation. STCP [19] multiplied the spatio-
temporal probability scores with visual scores to obtain the fusion
scores for clustering and similarity judgement during the testing
phase. JVTC [13] calculated the temporal consistency scores based
on the time interval distribution between two cameras, and multi-
plied the scores with visual scores for model optimization.

All of above multi-modal methods conduct some hard combi-
nation strategies by multiplying the visual scores and the spatio-
temporal scores, which are sensitive to the noise caused by the im-
precise estimation of spatio-temporal patterns. Without the ground-
truth labels of pedestrians, most of the methods estimate the spatio-
temporal transition probabilities by analyzing the time interval of

3736

https://orcid.org/0009-0006-4112-5549
https://orcid.org/0000-0003-3691-4755
https://orcid.org/0000-0002-3437-5260
https://orcid.org/0000-0002-2747-7234
https://doi.org/10.1145/3581783.3613757
https://doi.org/10.1145/3581783.3613757


MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Yaobin Zhang, Jianming Lv, Chen Liu, & Hongmin Cai

camera 1 camera 2

... ...

(a)

... ...

camera 1 camera 2

Δt=43570

camera 1 camera 2

St 
score

vision
score

0.1 0.9

0.09

hard 
combination

(b)

Figure 1: The spatio-temporal transition probability distri-
bution is constructed on the Market-1501 dataset [39] using
cross-camera image pairs of different types. (a) The distribu-
tion is constructed from visually similar image pairs. (b) The
distribution is constructed from ground-truth person IDs.

the cross-camera images pairs containing the persons with similar
appearance, which is judged by the visual model. For the scenarios
with many visually similar negative samples, the model may learn
incorrect cross-camera transition patterns, which result in wrong
spatio-temporal scores as shown in Fig. 1. In particular, Fig. 1(a)
shows the probability distribution of person transition from camera
1 to camera 2 based on the top 10 visually similar negative samples
among all images in the Market-1501 dataset [39]. In contrast, Fig. 1
(b) depicts the ground-truth probability distribution of person tran-
sition. A significant difference can be observed between above two
distributions, which may bring serious noise to the multiplication
of visual scores and spatio-temporal scores.

Additionally, due to environmental factors and individual char-
acteristics of person, transition between cameras is irregular for
different persons. Therefore, the images of the persons with atypi-
cal transition time may receive much lower spatio-temporal scores.
As shown in Fig. 1 (b), although the visual similarity of the positive
image pair reaches 0.9, the model is highly likely to misidentify
them as different persons after using the fusion of hard combination
due to their low spatio-temporal transition probability of only 0.1.
The hard combination with the noisy spatio-temporal information
limits the advantage of the multi-modal fusion. In particular, the re-
cently proposed pure visual unsupervised Re-ID methods [2, 30, 37]
outperform the traditional multi-modal methods [13, 19, 21] with a
large gap.

Based on the aforementioned analysis, we propose a Graph based
Spatial-Temporal Fusion method, namely G-Fusion, which inte-
grates spatial-temporal information softly to achieve significant
improvement of Re-ID performance. By limiting the scope of the
spatial-temporal information and only using it as a means of se-
lecting neighbors in the graph, where a graph based aggregation
method is conducted to learn structural affinities between images,
the impact of the spatial-temporal noise is greatly reduced. Specifi-
cally, in the training phase, we select the cross-camera image pairs

that are most likely to contain the same person based on visual
similarity measurement and record their time intervals as a tran-
sition set for each pair of cameras. A graph of images is built by
connecting the intra-camera image pairs with high visual similar-
ity and the visually similar inter-camera image pairs which have
the transition time within the fluctuation range of the records in
the corresponding transition set. Then we use a randomly initial-
ized two-layer GraphSAGE model [8] to obtain the affinity matrix
between images, and utilize the distillation learning to make the
model learn the relationships between nodes based on the graph.
In the testing phase, a graph based multi-modal re-ranking method
is proposed to make the final Re-ID decision.

The main contributions of this paper are as follows:
(1) We propose a Graph based Spatio-Temporal Fusion model

for unsupervised person Re-ID, namely G-Fusion, which integrates
the spatial-temporal information softly to reduce the impact of
spatial-temporal noise and achieve significant improvement of per-
formance.

(2) We apply a randomly initialized two-layer GraphSAGE model
to obtain the multi-modal affinity matrix between images, and
deploy the distillation learning to optimize the visual model by
learning the affinity between the nodes. Meanwhile a graph-based
multi-modal re-ranking method is proposed to enhance the preci-
sion of person Re-ID.

(3) We conduct comprehensive experiments on two commonly
used Re-ID benchmark datasets, and the results show that G-Fusion
can achieve superior performance with good scalability. More im-
portantly, G-Fusion can be easily combined with other SOTA meth-
ods to significantly improve the overall performance.

2 RELATEDWORK
This section discusses relevant literatures including unsupervised
person Re-ID, graph-based person Re-ID, spatio-temporal fusion
for supervised person Re-ID, and spatio-temporal fusion for unsu-
pervised person Re-ID.

2.1 Unsupervised Person Re-ID
Most state-of-the-art unsupervised person Re-ID methods adopt
pseudo-labeling techniques, which cluster and fine-tune on the
target domain, and iteratively update the pseudo-labels and model
parameters based on unlabeled data. In particular, MMT [6] pro-
posed a synchronous average teaching framework for pseudo-label
optimization, i.e., using more robust soft labels to perform online
optimization on pseudo-labels. SpCL [7] treated each cluster and
outlier as a single class, and then performs contrastive learning from
instances to centroids. CAP [30] handled larger intra-personal differ-
ences caused by different cameras by generating proxies with cam-
era awareness. ICE [2] improved previous class-level contrastive
learning methods using pair-wise similarity scores between in-
stances and used similarity scores as soft pseudo-labels to enhance
consistency between the original view and the augmented views.

2.2 Spatio-Temporal Fusion for Person Re-ID
Due to the limitations of visual modality, many researchers have
turned their attention to supervised multi-modal person Re-ID
methods by fusing ground-truth spatio-temporal information. In
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Figure 2: The Graph-based Spatio-Temporal Fusion framewwork, which consists of four main stages: (1) using spatio-temporal
information to assist in selecting neighboring nodes and constructing a graph.(2) propagating node information and aggregating
neighboring nodes to obtain the embedding of each node.(3) distilling the affinity matrix through learning to enable the model
to learn the mutual relationships between nodes.(4) applying a graph based multi-modal re-ranking to reorder the test results.

particular, Wang et al. [28] proposed a novel dual-stream spatio-
temporal framework for person Re-ID, which explored both visual
semantic information and temporal information, and introduced a
joint similarity measure using Logistic smoothing to combine the
two types of information. Shu et al. [25] contributed a new large-
scale spatio-temporal person Re-ID dataset (LaST) and proposed an
effective baseline on this basis. Ren et al. [24] proposed an instance-
level method to model the temporal and spatial patterns of person
separately, and utilized the instance-level status information of each
person to provide personalized predictions.

Above supervisedmulti-modalmethods require real-world spatio-
temporal data. However, in realistic scenarios, it is impossible to
obtain the IDs for all person images, thereby preventing the acquisi-
tion of ground-truth spatio-temporal information. As a result, many
researchers turned to the research of unsupervised multi-modal
person Re-ID methods. In particular, Lv et al. [21] used Bayesian
fusion to evaluate performance by combining visual and temporal
modalities. Sridhar Raj S et al. [22] proposed a deep non-annotated
method based on spatio-temporal correlation rules, which used
visual features to incrementally cluster unlabelled person images
and fine-tuned clustering by mining spatio-temporal correlation
rules. Li et al. [13] calculated temporal consistency based on the

time interval distribution between two cameras, fused it with visual
scores to obtain a joint similarity score, and used this to optimize
the model’s clustering process.

2.3 Graph based Person Re-ID
As a widely used data structure, graph has been applied in various
scenarios of person Re-ID. BMLC [36] proposed a multi-label pre-
diction method based on the graph structure perspective, which
predicted multiple labels by considering pairwise similarity and
the distribution of neighboring nodes for each node. MGH [34]
modeled the cross-camera heterogeneous data correlation using
camera-perceiving hyper-edges, constructing a hyper-graph for
feature learning and label refinement. HGA [38] proposed a coarse-
to-fine heterogeneous graph alignment method by representing
unlabeled data as heterogeneous graphs for each camera to find
cross-camera person matching. HGO [17] proposed a heteroge-
neous graph driven optimization scheme, constructing a heteroge-
neous graph on the target domain and optimizing the model using
heterogeneous affinity learning methods.

3 GRAPH BASED SPATIO-TEMPORAL FUSION
Fig.2 illustrates the overall framework of our proposed Graph-based
Spatio-Temporal Fusion model, namely G-Fusion, which consists of
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four main parts. Firstly, in the stage of Spatio-temporal Fusion
basedGraphConstruction, we obtain persons’ cross-camera tran-
sition time set by utilizing the visual similarity measurement, and
further filter neighboring nodes based on whether their transition
times fall in the fluctuation range of the corresponding transition
set. Then, in the stage of Graph based Node Information Prop-
agation Stage, we aggregate the neighbors of each node through
a two-layer GraphSAGE [8] model to obtain node embeddings and
calculate the affinity matrix between nodes. Subsequently, in the
stage of Distillation Learning of Affinity Matrix, we apply the
obtained affinity matrix to distill the model. Finally, in the stage of
Graph based Multi-modal Re-ranking, we construct a graph of
the gallery set and query set using the same construction strategy
to obtain the node embeddings of queried images, which are used
for the re-ranking of matching results. The details of each stage
will be presented in the following sections.

3.1 Spatio-temporal Fusion based Graph
Construction

As shown in Fig.1, the lack of ground-truth labels and the irregular-
ity of personal spatio-temporal transition often result in unreliable
spatio-temporal scores. The hard combination method by directly
multiplying the visual scores and the spatio-temporal scores may
even make the performance of the fusion model worse than the
pure visual model in some special cases as shown in Fig. 1 (b). The
key is to reduce the noise caused by the fusion of spatio-temporal in-
formation. Based on this analysis, we propose a soft fusion method
of constructing a graph by connecting the nodes with higher spatio-
temporal correlation as well as higher visual similarity. The repre-
sentation of the graph is as follows:

𝐺𝑡 =< 𝑉 𝑡 , 𝐸𝑡 >

𝑉 𝑡 =
{
𝑉 𝑡
𝑖 | 0 ≤ 𝑖 < 𝑁𝑡

}
𝐸𝑡 = 𝐸𝑡𝑣 ∪ 𝐸𝑡𝑠𝑡 (1)

Here,𝑉 𝑡 =
{
𝑉 𝑡
𝑖
| 0 ≤ 𝑖 < 𝑁𝑡

}
represents the unlabeled images from

the training set of the target domain, where 𝑁𝑡 is the total number
of images. For each image 𝑉 𝑡

𝑖
∈ 𝑉 𝑡 , its visual feature vector is

generated by the initialized visual model and denoted as 𝑣𝑡
𝑖
. The

affinity between any pair of images 𝑉 𝑡
𝑖
,𝑉 𝑡

𝑗
∈ 𝑉 𝑡 is calculated as

follows:

𝑆𝑡𝑖 𝑗 = exp
(
−



𝑣𝑡𝑖 − 𝑣𝑡𝑗




2 /2𝛼2) (2)

The adoption of the Gaussian kernel function is aimed at enhancing
the non-linear discriminative capacity of the affinity measurement.

𝐸𝑡 in Eq. (1) denotes the edge set of graph𝐺𝑡 , where𝐸𝑡𝑣 represents
the edge set constructed from visual information, and 𝐸𝑡𝑠𝑡 represents
the edge set constructed based on spatio-temporal information.
Specifically, for 𝐸𝑡𝑣 , we sort the images from the training set 𝑉 𝑡

based on the affinity with the image 𝑉 𝑡
𝑖
, and then select the top 𝑘𝑠

images to construct 𝐸𝑡𝑣 . We assume that for any image 𝑉 𝑡
𝑖
, there

is a high probability that its top 𝑘𝑠 images belong to the same ID
as 𝑉 𝑡

𝑖
. Therefore, we can use these top 𝑘𝑠 images to construct the

set of transition time for cross-camera person tracking. The set of
transition time 𝑇 (𝑎, 𝑏) from any camera 𝑎 to another camera 𝑏 can

be represented in the following form:

𝑇 (𝑎, 𝑏) =
{
𝑡𝑖 − 𝑡 𝑗 | 𝑆𝑡𝑖 𝑗 ∈

{
𝑆𝑡𝑖

}
𝑘𝑠

,𝐶 (𝑉 𝑡
𝑖 ) = 𝑎,𝐶 (𝑉 𝑡

𝑗 ) = 𝑏

}
(3)

where 𝑡𝑖 represents the frame number of image 𝑉 𝑡
𝑖
captured by

camera 𝑎, and 𝑡 𝑗 represents the frame number of image𝑉 𝑡
𝑗
captured

by camera𝑏.𝐶 (·) indicates the camera ID of the image. 𝑆𝑡
𝑖 𝑗

∈
{
𝑆𝑡
𝑖

}
𝑘𝑠

indicates the affinity between image 𝑉 𝑡
𝑖
and image 𝑉 𝑡

𝑗
is within the

top 𝑘𝑠 ranking of the affinity scores of image 𝑉 𝑡
𝑖
.

Based on the transition set𝑇 (𝑎, 𝑏), the edge set 𝐸𝑡𝑠𝑡 is constructed
as follows. For any image 𝑉 𝑡

𝑖
from camera 𝑎, an edge is built with

another image 𝑉 𝑡
𝑗
from camera 𝑏, if the following condition is

satisfied: [
Δ𝑡𝑖 𝑗 − 𝛿,Δ𝑡𝑖 𝑗 + 𝛿

]
∩𝑇 (𝑎, 𝑏) ≠ ∅ ∧ 𝑆𝑡𝑖 𝑗 ∈

{
𝑆𝑡𝑖

}
𝑘𝑙

(4)

where Δ𝑡𝑖 𝑗 = 𝑡𝑖 − 𝑡 𝑗 indicates the time interval between the two
images. 𝛿 and 𝑘𝑙 are pre-defined positive constant. 𝑆𝑡

𝑖 𝑗
∈

{
𝑆𝑡
𝑖

}
𝑘𝑙

indicates the affinity between image 𝑉 𝑡
𝑖
and image 𝑉 𝑡

𝑗
is within the

top 𝑘𝑙 ranking of the affinity scores of image 𝑉 𝑡
𝑖
. Eq. (4) defines the

condition combining both spatio-temporal constraint and visual
similarity, which makes sure only the images with relatively high
similarity and correlated spatio-temporal pattern can be selected
to build the connection in 𝐸𝑡𝑠𝑡 .

3.2 Graph based Node Information Propagation
After constructing a graph that integrates spatio-temporal informa-
tion, in order to better explore the deep relationships between im-
ages, we propose a node information propagation algorithm based
on GraphSAGE [8]. In particular, from section 3.1, we can obtain
the adjacency matrix representation 𝐴𝑡 of the graph as follows:

𝐴𝑡
𝑖 𝑗 =

{
𝑆𝑡
𝑖 𝑗
, 𝐸𝑡

𝑖 𝑗
∈ 𝐸𝑡

0, otherwise
(5)

where the affinity 𝑆𝑡
𝑖 𝑗
is obtained from Eq (2) to represent the weight

of an edge. Given that the adjacency matrix 𝐴𝑡 is typically sym-
metrical, we can introduce a symmetric adjacency matrix (𝐴𝑡 )∗
as: (

𝐴𝑡 )∗ = 1
2

(
𝐴𝑡 +

(
𝐴𝑡 )𝑇 ) (6)

Meanwhile, we adopt a two-layer GraphSAGE model to explore
the structural relationship between images. Specifically, we obtain
the embeddings of nodes by using the GCN-based aggregation
functions to integrate the representation of all neighboring nodes
at each layer in the following form:(

𝑣𝑡𝑖
)𝑘

= 𝜎

(
𝑊 𝑘 ·

( (
𝐷𝑡 )−1 (𝐴𝑡 )∗)

𝑖 𝑗

(
𝑣𝑡𝑗

)𝑘−1)
, ∀𝑗 ∈ N(𝑖) ∪ 𝑖 (7)

where
(
𝑣𝑡
𝑖

)𝑘
denotes the embedding for the 𝑘𝑡ℎ layer obtained by

aggregating the features of the (𝑘 − 1)𝑡ℎ layer’s neighbors of node
𝑉 𝑡
𝑖
. 𝜎 (·) is the ReLu activation function. Meanwhile,𝑊 𝑘 represents

the projection matrix for the 𝑘th layer.𝐷𝑡 is the degree matrix of𝐴𝑡 ,
which is normalized by using row normalization. N(𝑖) denotes the
neighborhood of node 𝑖 . Moreover, we use the aggregation function
in the form of GCN.
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We observe that for any node 𝑉 𝑡
𝑖
, it is difficult to find effective

positive and negative samples to optimize the projection matrix
𝑊 following the optimization procedure of traditional graph em-
bedding. Additionally, the adjacency matrix already reflects the
relationship of two nodes. Therefore, in Eq.(7), we use a randomly
initialized projection matrix for aggregation. This not only speeds
up the training process but also enables the exploration of deep
connections between nodes.

Then, we calculate the affinitymatrix𝑀 in the form of a Gaussian
kernel function for the embeddings of the nodes in the last layer
obtained after aggregation. Each element of𝑀 is defined as follows:

𝑀𝑖 𝑗 = exp
(
−



(𝑣𝑡𝑖 )𝑛 −

(
𝑣𝑡𝑗

)𝑛


2 /2𝛼2) (8)

Here
(
𝑣𝑡
𝑖

)𝑛
represents the embedding of image 𝑉 𝑡

𝑖
obtained by

aggregating its neighbours through the 𝑛-layer GraphSAGE model.
The higher the value of𝑀𝑖 𝑗 , the greater the probability that images
𝑉 𝑡
𝑖
and 𝑉 𝑡

𝑗
belong to the same person.

3.3 Distillation Learning of Affinity Matrix
In order to distill the knowledge embedded in the graph structure to
optimize the visual model, we propose a graph based loss function
inspired by the heterogeneous affinity learning method H-GO [17].
On the basis of taking into account the diversity of cameras, we
adopted the cross-entropy between the affinity distribution and the
similarity predicted by the model as the following loss function:

L = −
𝑁𝑡∑︁
𝑖=1

𝑁𝑐∑︁
𝑐=1

∑︁
𝑗∈N(𝑖 )
𝐶 𝑗=𝑐

M
(𝑐 )
𝑖 𝑗

log
(
P (𝑐 )

(
F

(
𝑉 𝑡
𝑗 , 𝜃

)
| F

(
𝑉 𝑡
𝑖 , 𝜃

) ))
(9)

where 𝑐 denotes the ID of a camera and 𝑁𝑐 represents the total
number of cameras, 𝐶 𝑗 = 𝑐 indicates that image 𝑉 𝑡

𝑗
is captured

by camera 𝑐 . N(𝑖) indicates the neighbor set of 𝑉 𝑡
𝑗
. Eq.(9) groups

nodes based on camera ID and independently calculates the affinity
within each group. Specifically, the calculation formula for the
affinity measureM(𝑐 ) related to grouping is as follows:

M
(𝑐 )
𝑖 𝑗

=


𝑀𝑖 𝑗

max
𝑘∈N(𝑖 ),𝐶𝑘=𝑐

(𝑀𝑖𝑘 ) , 𝑗 ≠ 𝑖 ∧ 𝑗 ∈ N(𝑖)

0, 𝑗 ≠ 𝑖 ∧ 𝑗 ∉ N(𝑖)
1, 𝑗 = 𝑖

(10)

Furthermore, P (𝑐 ) defines the possibility of the model predicting
that image𝑉 𝑡

𝑖
and the image𝑉 𝑡

𝑗
that is captured by camera 𝑐 belong

to the same person:

P (𝑐 )
(
F

(
𝑉 𝑡
𝑗 , 𝜃

)
| F

(
𝑉 𝑡
𝑖 , 𝜃

) )
=

exp
(
F

(
𝑉 𝑡
𝑗
, 𝜃

)
· F

(
𝑉 𝑡
𝑖
, 𝜃

)
/𝜏
)

∑
𝑘∈N(𝑖 )
𝐶𝑘=𝑐

exp
(
F

(
𝑉 𝑡
𝑘
, 𝜃

)
· F

(
𝑉 𝑡
𝑖
, 𝜃

)
/𝜏
)

(11)
However, the cost of optimizing model parameters by directly min-
imizing L is very expensive because we need to recalculate the
feature vectors of all images in each iteration. Therefore, we employ
a memory bank to store the feature vectors of all images. When
calculating similarity, we retrieve the feature vector corresponding
to image 𝑉 𝑡

𝑗
from the memory bank and calculate the similarity

with the feature vector generated by the model. Specifically, we
define an approximate loss function for L:

L = −
𝑁𝑡∑︁
𝑖=1

𝑁𝑐∑︁
𝑐=1

∑︁
𝑗∈N(𝑖 )
𝐶 𝑗=𝑐

M
(𝑐 )
𝑖 𝑗

log
(
P (𝑐 ) (I𝑗 | F (

𝑉 𝑡
𝑖 , 𝜃

) ) )
(12)

The feature vector of image 𝑉 𝑡
𝑗
obtained from the memory bank I

is denoted as I𝑗 , and P (𝑐 )
(
I𝑗 | F

(
𝑉 𝑡
𝑖
, 𝜃

))
is defined as follows:

P (𝑐 ) (I𝑗 | F (
𝑉 𝑡
𝑖 , 𝜃

) )
=

exp
(
I𝑗 · F

(
𝑉 𝑡
𝑖
, 𝜃

)
/𝜏
)

∑
𝑘∈N(𝑖 )
𝐶𝑘=𝑐

exp
(
I𝑘 · F

(
𝑉 𝑡
𝑖
, 𝜃

)
/𝜏
) (13)

Regarding the feature vectors in memory bank I, we adopt a
momentum-based update strategy. In each iteration, the feature
vector 𝑣𝑡

𝑖
generated from each mini-batch is used to update the

corresponding entry I𝑖 in memory bank I:

I𝑖 =𝑚I𝑖 + (1 −𝑚)𝑣𝑡𝑖 (14)

Where 𝑚 ∈ [0, 1] is the momentum coefficient of updating the
feature vector. In the experiment,𝑚 was set to 0.01.

3.4 Graph based Multi-modal Re-ranking
During the testing phase, similar to the approach in sections 3.1
and 3.2, we construct a graph on the gallery set. The feature vectors{
𝑣
𝑞

𝑖

}𝑁𝑞

𝑖=1 and
{
𝑣
𝑔

𝑗

}𝑁𝑔

𝑖=1
are extracted from the query set and the gallery

set, respectively, using a well-trained backbone. Next, a similar
approach as in Eq.(2) is used to obtain the affinitymatrix 𝑆𝑔

𝑖 𝑗
between

gallery-set images using a Gaussian kernel function.
Following the composition method similar to section 3.1, for

any gallery set image 𝑉𝑔

𝑖
, all other images in the gallery set are

sorted based on the affinity and the top 𝑘𝑠 ones are selected as its
neighbors. Meanwhile, based on the transition set 𝑇 (𝑎, 𝑏) obtained
in section 3.1, any pair of cross-camera images in the gallery set are
also connected if the multi-modal constraint of Eq (4) is satisfied.

Then, following the method in section 3.2, we utilize a two-layer
GraphSAGEmodel to obtain embeddings for the nodes in the graph:(

𝑣
𝑔

𝑖

)𝑛
= 𝜎

(
𝑊 𝑛 ·

( (
𝐷𝑔 )−1 (𝐴𝑔 )∗)

𝑖 𝑗

(
𝑣
𝑔

𝑗

)𝑛−1)
,∀𝑗 ∈ N(𝑖) ∪ 𝑖 (15)

where 𝑛 denotes the number of layers in GraphSAGE.
(
𝑣
𝑔

𝑖

)𝑛
rep-

resents the embedding of node 𝑉𝑔

𝑖
at the 𝑛𝑡ℎ layer output by the

model. 𝐴𝑔 and 𝐷𝑔 are defined similarly to section 3.2, where 𝐴𝑔 is
the adjacency matrix of the graph constructed from the gallery set

and 𝐷𝑔 is its corresponding degree matrix.
(
𝑣
𝑔

𝑗

)𝑛−1
is the feature

vector of the neighboring nodes of node 𝑉𝑔

𝑖
at the (𝑛 − 1)𝑡ℎ layer.

For the images in the query set, they are treated as new nodes
added to the graph. The judgment of the neighbor relationship is
similar to section 3.1. Firstly, using the Gaussian kernel function to
calculate the affinity 𝑆𝑞𝑔

𝑖 𝑗
between the query set and the gallery set.

Secondly, the top 𝑘𝑠 gallery-set images for each query image 𝑉𝑞

𝑖
are obtained by sorting according to affinity, and they are treated as
neighbors. Finally, based on spatio-temporal information, we select
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neighboring nodes from the top 𝑘𝑙 gallery images of the query
image 𝑉𝑞

𝑖
according to Eq (4).

Then, similar to Eq.(15), the embedding of the query image is
obtained through neighbor aggregation and random projection:(

𝑣
𝑞

𝑖

)𝑛
= 𝜎

(
𝑊 𝑛 ·

( (
𝐷𝑞𝑔 )−1 (𝐴𝑞𝑔 )∗)

𝑖 𝑗

(
𝑣
𝑔

𝑗

)𝑛−1)
,∀𝑗 ∈ N(𝑖) ∪ 𝑖

(16)

In the end, the similarity between the generated embeddings(
𝑣
𝑞

𝑖

)𝑛
and

(
𝑣
𝑔

𝑖

)𝑛
of the query set and gallery set is calculated to

obtain the final ranking results.

4 EXPERIMENTS AND RESULTS
In this section, we first introduce the datasets and experimental
settings in Sec. 4.1 and Sec. 4.2, respectively, followed by the pre-
sentation of results in Sec. 4.3. Subsequently, we conduct ablation
study in Sec. 4.4 and provide an analysis of parameter sensitivity
in Sec. 4.5. Finally, the qualitative results are presented in Sec. 4.6.

4.1 Datasets
We will evaluate the Graph based Spatial-temporal Fusion method,
namely G-Fusion, on two widely recognized large-scale datasets:
Market-1501, and MSMT17. The detailed descriptions of these
datasets are as follows:

Market-1501 [39]. Market-1501 is a dataset that includes a total
of 15,01 identities captured in 32,217 images from six cameras. Each
person is captured by at least two cameras. Its training set consists of
a total of 12,936 images of 751 identities, while the test set comprises
19,281 images of 750 identities. Market-1501 provides sequence ID
labels and partial frame labels for each image, which can be used
as time information, and camera labels as spatial information.

MSMT17 [32]. MSMT17 is currently the largest image-based
person Re-ID dataset, consisting of a total of 126,441 images of
4,101 identities captured by 15 cameras. The training set contains
32,621 images of 1,041 identities, and the testing set contains 93,820
images of 3,060 identities. Additionally, MSMT17 provides temporal
information such as the time period label and local frame label for
each image, as well as spatial information in the form of camera
labels.

4.2 Configuration of Models
ResNet-50 [10] is employed as the feature extractor F to transform
the input samples into 2048-dimensional feature vectors.

During the supervised training phase in the source domain, we
pre-trained our model on ImageNet [3]. We chose the Adam opti-
mizer and set the mini-batch size to 64. We trained the backbone
using the conventional identity loss and hard-batch triplet loss with
the learning rate of 0.00035 for a total of 80 epochs.

During the unsupervised training phase in the target domain,
we resized images to 256×128 using data augmentation of random
cropping, flipping, and color jittering. We use Adam optimizer with
a mini-batch size of 64 and a learning rate of 0.00035 for a total of
8 epochs for training the model. The hyper-parameter 𝛼 in Eq.(2)
and Eq.(8) were set to 1, while the temperature parameter in Eq.(13)
was set to 0.05 and the momentum coefficient in Eq.(14) was set to
0.01. Besides, 𝛿 in Eq.(4) was set to 25.

Furthermore, for graph construction during both the training
and testing stages, we set 𝑘𝑠 and 𝑘𝑙 to 3 and 60, respectively. All
experiments were conducted on two GTX 1080Ti GPUs with 80
CPU cores and 128GB of memory.

4.3 Comparison Results
The results of our four cross-domain experiments are presented
in Tables 1, where the model is pre-trained on the labeled source
dataset and transferred to the unlabeled target dataset. As shown in
Table 1, our method outperformsmost existingmethods in the cross-
domain experiments on Market-1501 and MSMT17. Specifically,
after re-ranking, we achieved a top-1 accuracy of 94.4% and an
mAP of 85.9% on Market-1501, which are respectively 1.3% and
22.4% higher than the unsupervised spatial-temporal fusion method
STGAL[33]. Our method also surpasses most purely visual methods
and approaches transformer-based method. Furthermore, on the
MSMT17 dataset, we achieved a top-1 accuracy of 72.7% and an
mAP of 52.1% after re-ranking, which are respectively 24.1% and
27% higher than the best unsupervised person Re-ID method JVTC+
[13] that fused spatio-temporal information, and even surpassing
the best-performing model TransReID-SSL[20] by 1.0% in terms of
mAP.

Additionally, we validated the effectiveness of our method in
combination with other pure visual methods. Table 1 displays that
the performance of models significantly surpasses the original
methods when our method is incorporated. For instance, MMT+G-
Fusion* outperforms MMT [6] by 12.6% and 42.7% in mAP on
the Market-1501 and MSMT17 datasets, respectively. Moreover,
TransReID-SSL+G-Fusion* achieved state-of-the-art results on both
Market-1501 andMSMT17 datasets. Furthermore, it can be observed
from the table that there is a significant improvement of perfor-
mance after re-ranking. This is because after processing the gallery
set of the target-domain, the model can more easily identify images
in the gallery set related to the query image, thus considerably
enhancing the performance of the model.

4.4 Ablation Study
The most crucial parts of our method include integrating spatial-
temporal information in training and testing stage when construct-
ing the graph and re-ranking based on graph. In order to analyze the
contribution of these components clearly, we conducted ablation
studies on two datasets and show the results in Table 2. Specifically,
Model 0 indicates the basic model only using vision information
to construct the graph in the training phase and not conducting
post-processing method in the testing phase. Model 1 indicates the
model adding spatio-temporal information to construct the graph
in the training phase. Model 2 represents using spatio-temporal
information to construct the graph in the training phase and con-
ducting reranking in the testing phase. Model 3 indicates the model
adding re-ranking in the testing stage. Model 4 represents using
re-ranking and spatio-temporal information in the testing phase.
Model 5 is the full model equipped with all components. As shown
in Table 2, the effectiveness of solely using visual information in
the training and testing stages is significantly lower than that of
models that incorporate spatio-temporal information. Moreover, if
spatio-temporal information is not used in either the training or
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Table 1: Comparison with state-of-the-art spatio-temporal fusion and pure visual methods on Market-1501 and MSMT17. (*)
indicates the re-ranking is implemented in the testing stage.

Type Method MSMT17→Market-1501 Market-1501→MSMT17
mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

unsupervised spatio-temporal
fusion methods

RASTF(USL) [16] 25.7 64.3 - - - - - -
TAUDL(USL) [15] 41.2 63.7 - - - - - -

TCUL [1] 44.5 72.1 86.3 - - - - -
STAR-DAC(USL) [22] 33.9 67.0 80.6 84.9 17.66 41.51 55.12 64.86

JVTC+ [13] - - - - 25.1 48.6 65.3 68.2
STGAL(USL) [33] 63.5 93.1 - - - - - -

unsupervised pure
visual methods

H-GO [17] 65.2 88.4 94.4 95.9 9.3 25.1 35.9 41.2
MMT [6] 76.6 90.3 96.9 98.1 22.7 50.2 64.0 69.9
SpCL [7] 75.5 89.7 96.0 97.5 21.3 45.8 57.6 63.2
𝑃2𝐿𝑅 [9] - - - - 29.0 58.8 71.2 76.0
AWB [31] 79.4 92.6 97.1 98.2 29.0 57.3 70.7 75.9
CAP [30] 75.9 90.4 95.6 97.2 31.7 63.5 75.1 78.9

CIDAM(USL) [11] 78.4 90.9 - - 34.3 65.9 - -
CCL [12] - - - - 35.8 65.8 - -
ICE [2] 82.6 93.9 97.5 98.4 38.8 69.4 80.2 84.2
PAT [37] - - - - 41.5 67.8 74.5 78.9

TransReID-SSL [20] 89.5 95.4 98.0 98.8 51.1 74.3 83.6 87.1

Ours

G-Fusion 75.4 90.1 95.7 97.2 26.6 54.0 67.1 72.4
G-Fusion* 85.9 94.4 96.9 97.4 52.1 72.7 78.7 80.5

MMT+G-Fusion* 89.2 95.8 97.9 98.3 65.4 82.5 86.5 87.7
SpCL+G-Fusion* 90.0 95.7 98.0 98.2 65.5 82.0 85.9 86.9
CAP+G-Fusion* 87.9 95.3 97.3 97.7 66.5 82.8 87.1 88.0
ICE+G-Fusion* 91.0 96.8 98.6 98.8 73.6 87.6 90.4 90.9

TransReID-SSL+G-Fusion* 92.292.292.2 96.696.696.6 98.798.798.7 99.099.099.0 80.480.480.4 89.589.589.5 92.392.392.3 92.892.892.8

Table 2: Ablation study of our method with different configurations of key components.𝑆𝑇𝑡𝑟𝑎𝑖𝑛 and 𝑆𝑇𝑡𝑒𝑠𝑡 means integrating
spatial-temporal information when constructing the graph in the training stage and in the testing stage.

Model Components MSMT17→Market-1501 Market-1501→MSMT17
Baseline 𝑆𝑇𝑡𝑟𝑎𝑖𝑛 re-ranking 𝑆𝑇𝑡𝑒𝑠𝑡 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

0 ! % % % 60.4 81.4 90.8 93.4 9.3 23.2 33.9 39.5
1 ! ! % % 75.4 90.1 95.7 97.2 26.6 54.0 67.1 72.4
2 ! ! ! % 76.7 89.8 94.2 95.4 25.3 51.2 62.5 66.9
3 ! % ! % 60.3 81.0 87.9 90.2 8.5 21.3 29.1 32.8
4 ! % ! ! 74.4 89.0 93.1 94.4 21.8 44.9 51.6 54.1
5 ! ! ! ! 85.985.985.9 94.494.494.4 96.996.996.9 97.497.497.4 52.152.152.1 72.772.772.7 78.778.778.7 80.580.580.5

testing phase, the mAP on the Market-1501 dataset is decreased
by 25.5% and the Rank-1 is decreased by 13.0% compared to the
complete model. These results indicate that spatio-temporal infor-
mation plays a vital role in both the training and testing stages of
our method.

4.5 Parameter Sensitivity Analysis
We analyzed the sensitivity of the hyper-parameters, 𝑘𝑠 and 𝑘𝑙 ,
used in our method during the training and testing phases, and the
results are shown in Fig.3 and Fig.4. The parameter 𝑘𝑠 represents
the number of neighbors based on visual information in graph
construction, while 𝑘𝑙 represents the upper limit of the number of
neighbors based on spatio-temporal information. As shown in Fig.3,

during the training phase, the model achieved optimal performance
when 𝑘𝑠 ranged from 2 to 3 and 𝑘𝑙 ranged from 60 to 100. A signifi-
cant increase in model performance was observed as 𝑘𝑠 increased
from 1 to 2. This is because when 𝑘𝑠 is equal to 1, each node’s
neighborhood only includes itself, making it impossible to establish
relationships with other nodes. However, when 𝑘𝑠 increased from 2
to 10, there was a noticeable decrease in model performance on the
MSMT17 dataset, because this could lead to considering negative
samples that are visually similar as neighbors, introducing many
noisy images that can affect model performance. As depicted in
Fig.4, during the testing phase, the model performance exhibits a
similar variation trend to that observed during the training phase as
𝑘𝑠 and 𝑘𝑙 undergo changes. The optimal performance of the model
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is achieved when 𝑘𝑠 ranges from 2 to 3, and 𝑘𝑙 ranges from 60 to
100. In our experiments, we set 𝑘𝑠 to 3 and 𝑘𝑙 to 60 for both the
training and testing phases.

(a) (b)

Figure 3: Parameters analysis of 𝑘𝑠 and 𝑘𝑙 on Market-1501
and MSMT17 in the training stage.

(a) (b)

Figure 4: Parameters analysis of 𝑘𝑠 and 𝑘𝑙 on Market-1501
and MSMT17 in the testing stage.

(a) (b)

Figure 5: The transition time set in the Market-1501 dataset
extracted by our model and the ground truth. (a) Extracted
by our model. (b) Extracted by the ground truth.

4.6 Qualitative Results
In order to better demonstrate the effectiveness of the fusion of
spatio-temporal information in our method, we present in Fig.5
the quantity statistics of person transition time extracted by our
model and the ground truth. By comparing Fig.5(a) and Fig.5(b),
it can be seen that the spatio-temporal information extracted by
our method is generally close to the ground truth. Moreover, the
time periods where the number of person transitions is 0 are also
consistent with the actual person transition situations. Therefore,

the method of using the proximity between the transition times of
any two cross-camera images and the transition time set to assist
visual information judgment on whether they belong to the same
person is effective.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel Graph based Spatio-temporal
Fusion model, for unsupervised person Re-ID, namely G-Fusion.
We adopt a soft fusion strategy by leveraging person transition
time to assist in visual information filtering for neighbor nodes
selection, thus reducing the noise caused by spatio-temporal in-
formation fusion. We use GraphSAGE-based Node Information
Propagation method to obtain the embeddings of nodes and employ
the distillation learning of affinity matrix to guide model optimiza-
tion. Finally, during the testing phase, we apply the graph based
multi-modal Re-ranking to further improve the performance. Com-
prehensive experiments based on two large-scale Re-ID datasets
show that G-Fusion can significant improve the performance of
SOTA unsupervised person Re-ID methods.

In future work, we will extend the proposed method to stream-
ing scenarios to achieve dynamic graph expansion for handling
continuously incoming streaming data. Moreover, we will explore
the possibility of deploying the method on a real camera network.
This will enable us to tackle real-world challenges in the field of
person Re-ID.
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