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Abstract

Utilizing unlabeled data in the target domain
to perform continuous optimization is critical
to enhance the generalization ability of neural
networks. Most domain adaptation methods fo-
cus on time-consuming optimization of deep fea-
ture extractors, which limits the deployment on
lightweight edge devices. Inspired by the memory
mechanism and powerful generalization ability
of biological neural networks in human brains,
we propose a novel gradient-free Elastic Memory
Network, namely EMN, to support quick fine-
tuning of the mapping between features and pre-
diction without heavy optimization of deep fea-
tures. In particular, EMN adopts randomly con-
nected neurons to memorize the association of fea-
tures and labels, where the signals in the network
are propagated as impulses, and the prediction is
made by associating the memories stored on neu-
rons based on their confidence. More importantly,
EMN supports reinforced memorization of fea-
ture mapping based on unlabeled data to quickly
adapt to a new domain. Experiments based on
four cross-domain real-world datasets show that
EMN can achieve up to 10% enhancement of per-
formance while only needing less than 1% timing
cost of traditional domain adaptation methods.

1. Introduction
Most deep ANNs depend on a large scale of labeled data to
achieve superior performance and tend to overfit the training
sets while optimizing a deep network with a large number
of parameters. Especially in the visual classification tasks,
directly transferring a deep model across different domains
usually yields a significant drop in performance (Donahue
et al., 2014).
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Recently, some Unsupervised Domain Adaptation (UDA)
methods have been proposed to utilize the unlabeled data
in the target domain to continuously optimize the model.
In particular, the pseudo-label based methods (Liang et al.,
2020; 2021; Litrico et al., 2023) assign the data in the target
domain with pseudo labels to optimize the model in a su-
pervised mode. The clustering based methods (Liang et al.,
2020; Li et al., 2021) utilize the relationship between the
unlabeled samples to fine-tune the deep model. Meanwhile,
as a popular technique, the adversarial learning methods
(Ganin & Lempitsky, 2015; Zhang et al., 2018; Yang et al.,
2022) are usually used to reduce the cross-domain diversity
of feature distributions.

The manipulation of pseudo labels and optimization of the
deep features in the above UDA methods are usually much
more time-consuming compared with the inference proce-
dure, which increases the difficulty of supporting continuous
learning on lightweight edge devices. Is it possible to freeze
the feature extractor and only fine-tune the mapping be-
tween the features and predictions to efficiently enhance the
performance on the unlabeled target domain? This is an
interesting and practical problem, which is defined as the
Domain Adaptive Feature Mapping (DAMap) problem
in this paper.

Compared with ANNs, the biological neural networks
(BNN) in human brains work much better in this aspect,
which can adapt to the new domain quickly and update the
network efficiently with no need for large amounts of la-
beled data. Meanwhile, as pointed out by Hinton (Hinton,
2022), there is no direct proof of explicit gradient back-
propagation procedure in BNN. Different from the gradient-
based function fitting in ANN, BNN seems to take a totally
different manner to memorizing the association between
signals. The research (Pi et al., 2008) pointed out that mem-
ory in brains plays an important role in pattern recognition,
which contains three typical stages in the learning and mem-
ory process: encoding, storage, and retrieval (Melton, 1963).
Some recent research (Roy et al., 2022) showed that the
neural cells in brains involved in memory are distributed
throughout the entire brain, achieving distributed memory
through complex interconnection, rather than being limited
to the traditional hippocampus or cerebral cortex.
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EMN: Brain-inspired Elastic Memory Network

Inspired by the memory mechanism of brains, we try an-
other way to propose a novel gradient-free Elastic Memory
Network, namely EMN, to support quick Domain Adap-
tive Feature Mapping, which mimics the behavior of brains
in the following aspects. 1) Neurons are connected ran-
domly and signals are transmitted in the form of impulses
without continuous activation inspired by the spiking activi-
ties in brains (Maass, 1997). 2) Without using the gradient
back-propagation, only forwarding is required to process the
impulse signal, which is accumulated in the memory units
on each neuron and recorded in fuzzy Gaussian distributions
to form the memory storage. 3) The distributed memories
are retrieved and integrated based on the confidence to make
the final decision of classification; 4) Reinforced memoriza-
tion of the unlabeled data is supported to adapt the model to
the target domain efficiently.

Comprehensive experiments based on four cross-domain
real-world datasets show that EMN can efficiently improve
the association between input features and labels in the
unlabeled target domain. In particular, EMN can achieve
up to 10% enhancement of performance while only needing
less than 1% timing cost of traditional domain adaptation
methods.

The main contributions of this paper are summarized as
follows:

• We present a novel brain-inspired gradient-free Elastic
Memory Network, namely EMN, for efficient domain
adaptive feature mapping, which models the classi-
fication tasks as the distributed memory storage and
retrieval procedure on randomly connected neurons.

• We propose an impulse based information transmission
mechanism by introducing the accumulation behavior
in neurons, so as to achieve the non-linear transforma-
tion of signals. We further utilize multiple Gaussian
distributions to simplify the memory storage and adopt
the fuzzy memory based on Gaussian blur to reduce
the over-fitting problem.

• We design a reinforced memorization mechanism of
EMN, which supports lightweight and efficient opti-
mization of feature mapping based on unlabeled data
in the target domain.

2. Related works
2.1. Unsupervised Domain Adaptation (UDA)

Unsupervised Domain Adaptation (UDA) methods have
been extensively investigated for various application sce-
narios, including object recognition (Gopalan et al., 2013;
Csurka, 2017; Long et al., 2018) and semantic segmenta-
tion (Hoffman et al., 2018; Zou et al., 2018; Zhang et al.,

2019; Toldo et al., 2020). UDA methods (Pan & Yang, 2009;
Candela et al., 2009) focus on training a learner across do-
mains, which is usually achieved by aligning the diverse
cross-domain distributions or learning pseudo labels on the
target domain.

In particular, Wang et al. (Wang et al., 2023) achieved do-
main alignment by minimizing the distance between cross-
domain samples. Xie et al. (Xie et al., 2022) proposed a col-
laborative alignment framework to learn domain-invariant
representations by utilizing adversarial training or minimiz-
ing the Wasserstein distance between two distributions. Hu
et al. (Hu & Lee, 2022) introduced a novel distance-of-
distance loss that can effectively measure and minimize
domain differences without any external supervision. Du et
al. (Du et al., 2021) proposed a method of cross-domain gra-
dient difference minimization, which explicitly minimizes
the gradient differences generated by the source and target
samples.

The adversarial learning is another commonly used tech-
nique to minimize the difference in cross-domain features.
In particular, Yang et al. (Yang et al., 2022) proposed a dual-
module network architecture that incorporates a domain
recognition feature module. This architecture undergoes
adversarial training by maximizing the loss of feature distri-
bution and minimizing the discrepancy in prediction results.
The Collaborative Adversarial Network (CAN) (Zhang et al.,
2018) made the feature extractor and classifier cooperate in
shallow layers while competing in deep layers to generate
specific yet cross-domain features. In order to utilize the dis-
criminative information in classifier labels, the Conditional
Adversarial domain adaptation(CDAN) (Long et al., 2018)
attempted to align deep features based on classifier labels.

Recently, learning the pseudo labels predicted by the clas-
sifiers on the target domain has been proven quite useful
for domain adaptation. In particular, SHOT (Liang et al.,
2020) adopted self-supervised pseudo-labeling to implicitly
align representations from the target domains to the source
hypothesis. Litrico M et al.(Litrico et al., 2023) introduced a
novel loss re-weighting strategy, assessing the reliability of
refined pseudo-labels via estimating their uncertainty. Liang
et al. (Liang et al., 2021) proposed a pseudo-labeling frame-
work aimed at reducing classification errors by introducing
an auxiliary classifier solely for the target data, thereby en-
hancing the quality of the pseudo-labels. Li et al.(Li et al.,
2021) proposed a cross-domain adaptive clustering method,
which introduces an adversarial adaptive clustering loss to
facilitate both inter-domain and intra-domain adaptation.

All of the above methods require time-consuming optimiza-
tion of deep features based on gradient back-propagation
and are only suitable to be run on the server side.

2



EMN: Brain-inspired Elastic Memory Network

(a) Memory Storage in Brain (b) Memory Retrieval in Brain

(c) Memory Storage in EMN (d) Memory Retrieval in EMN

Figure 1. The framework of EMN including the memory storage and the memory retrieval stages compared with brains.

2.2. ANNs without Gradient Back-propagation

Besides the gradient back-propagation based neural net-
works, there are also some gradient-free network structures,
such as the Extreme Learning Machine (ELM) and some
of their variants (Cambria et al., 2013; Huang, 2015; Tang
et al., 2015). ELM adopted the randomized initialized net-
work for the random projection of features and fitted the
linear function on these non-linear features. Following a
similar idea to ELM, the Broad Learning System (BLS)
(Chen & Liu, 2017) extended the network to support in-
cremental learning for newly added dynamic features. The
Echo State Network (ESN) (Jaeger, 2002) adopted a ran-
dom projection network to achieve the non-linear features
of time series. The Liquid State Machine (LSM) (Maass
et al., 2002) represents a distinct variant of spiking neural
networks, characterized by randomly interconnected nodes
that concurrently receive inputs from external sources and
other nodes within the network. The recently proposed
Forward-Forward algorithm (Hinton, 2022) attempted to
use two forward processes with positive and negative data
respectively to replace the forward and backward processes
in the back-propagation algorithms.

The fundamental difference between EMN and above
methods. All of the above methods are designed to fit a
function mapping the input to the output, while EMN memo-
rizes the association between input and output on distributed
neurons and is able to perform reinforced memorization on
the unlabeled target domain.

3. METHODOLOGY
3.1. Problem Definition of DAMap

Most of the visual classification model can be formulated
as the function c(f(x)), where f is the feature extractor
based on the deep models such as ResNet (He et al., 2016)
and c is the light-weight classifier such as MLP (Rosen-
blatt, 1958; Rumelhart et al., 1986) to map the features to
output. Given a labeled source domain Ds = (xs

i , y
s
i )

ns

i=1

and unlabeled target domain Dt = (xt
i)

nt
i=1, the Domain

Adaptive Feature Mapping (DAMap) aims to transfer the
model trained on Ds to Dt, and utilize the unlabeled data
in Dt to optimize c while freezing the deep feature extrac-
tor f . DAMap avoids the time-consuming optimization of
deep feature extractors and is suitable for the lightweight
fine-tuning of visual models on edge devices.

3.2. Overview of Elastic Memory Network

As shown in Fig. 1, inspired by the memory storage and
retrieval stages of human brains, the Elastic Memory Net-
work (EMN) contains four basic memory-based key pro-
cedures: 1) Memory Encoding via impulse-based trans-
mission in randomly connected neural networks achieves
non-linear projection of the input features; 2) Distributed
Memory Storage simplified as multiple Gaussian distribu-
tions records the association between the features and the
labels; 3) Memory Retrieval aims to make predictions by
integrating the decision on distributed memory units accord-
ing to memory confidence; 4) Reinforced Memorization
continuously fine-tunes the memories for domain adaptation
according to the predicted labels. The pipeline of EMN will
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EMN: Brain-inspired Elastic Memory Network

be detailed in the following sections.

3.3. Memory Encoding via Random Projection

Inspired by the analysis of the brain network structure (Bas-
sett & Sporns, 2017), which contains highly connected hub
nodes as well as sparse linked ones, we adopt a hybrid
network topology in EMN including three types of nodes:
entrance nodes, hub nodes, and bridging nodes. As shown in
Fig. 1, the entrance nodes accept the input features and are
densely connected to the hub nodes. The bridging nodes are
randomly and sparsely connected by all of the other nodes.
The edges are all directed and the weights on all edges are
randomly initialized in the range [−1, 1].

After the features are fed to the entrance nodes, the signals
are propagated in the network through the edges in multiple
rounds. Each node accumulates the incoming signals and is
activated intermittently to form the impulse-like output to
mimic the spiking activity in brains:

hi,t+1 = hi,t +
∑
j∈Ni

oj,tWji (1)

oi,t+1 =

{
hi,t+1 if(hi,t+1 > 0)
0 else

(2)

hi,t+1 =

{
0 if(hi,t+1 > 0)
hi,t+1 else

(3)

mi,t+1 = mi,t + oi,t+1 (4)

m̂i = mi,T (5)

Here hi,t and oi,t(0 ≤ i < N) indicate the hidden state and
output value individually of the ith node in EMN. In the
tth(0 ≤ t ≤ T ) round of propagation, the signals collected
from the predecessor neighbors are accumulated in the hid-
den state on each node as shown in Eq (1), where the node
j is the predecessor neighbor of the node i, and Wji is the
weight of the edge from j to i. While the hidden state of a
node is larger than the threshold 0, the neuron is activated
with the value of the hidden state as Eq (2). Otherwise,
the output is 0 in this round. Once the neuron is activated,
the hidden state is cleared as Eq (3). The output signal is
accumulated as the memory signal mi,t as Eq (4), which
will be recorded in the memory storage in the future. When
an input feature vector X = (x1, x2, ..., xn) is fed to the
entrance nodes, the output signal oi,0(1 ≤ i ≤ n) of the
entrance nodes is initialized as xi, while oi,0 of other nodes
are all initialized as zero. Meanwhile, mi,0 and hi,0 are all
set as zero at the beginning. The steady memory signal of
the node i is defined as m̂i in Eq (5), where T is the max
number of the rounds.

3.4. Distributed Memory Storage

Inspired by the distributed memory in brains, each node of
EMN maintains the memory about the association between
the accepted memory signal m̂ and the label y for each input
instance as shown in Fig. 1(c). The memory unit of the ith

neuron node can be modeled as a two-dimensional image
Mi, the first dimension of which is the class label y and the
other one is the memory signal m̂. For each incoming fea-
ture vector, which is propagated in the network to achieve
the memory signal on each neuron by Eq (5), the associ-
ation of the memory signal and the label of the instance
can be stored by increasing the value of the corresponding
pixel in Mi. However, this trivial implementation of mem-
ory storage may lead to a large consumption of computer
memory.

To reduce the memory cost, we adopt multiple Gaussian
distributions to approximate the memory storage. In partic-
ular, for the visual classification tasks, we assume that the
distribution of memory signals in the kth class on the ith

neuron obeys the Gaussian distribution:

Pr(m̂i|y = k) =
1√
2πσk

i

exp(− (m̂i − µk
i )

2

2σk
i

) (6)

In this way, the storage of memory unit Mi can be repre-
sented as C Gaussian distribution {N(µk

i , σ
k
i )|1 ≤ k ≤ C}

with 2 ∗ C learnable parameters, where C is the number of
classes.

While training EMN on the labeled source domain, the
parameters are incrementally updated in batch as follows:

µk
i = βµk

i + (1− β)
1

B

B∑
b=1

m̂k
i,b (7)

σk
i,b = βσk

i,b + (1− β)
1

B

B∑
b=1

√
(m̂k

i,b − µk
i )

2 (8)

β denotes the temperature parameter between batches and
B denotes the batch size. m̂k

i,b denotes the memory signal
received on the ith node while processing the bth instance
belonging to the kth class.

Meanwhile, the above memory based learning relies on fit-
ting the probability distribution, so a smaller size of the
training set or imbalanced label distribution may cause the
over-fitting of the distribution function on insufficient sam-
ples. To increase the generalization ability of the model,
we introduce the Gaussian blur on the memorized Gaus-
sian distribution (Eq (6)) with the Gaussian kernel function
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EMN: Brain-inspired Elastic Memory Network

g(x1, x2) = exp(− (x1−x2)
2

2σ1
) to achieve the fuzzy memory:

Q(m̂i|y = k) =

∫ +∞

−∞
Pr(m̂|y = k)g(m̂, m̂i)dm̂

=

√
σ1

2
√
2σk

i + σ1

exp(− (m̂i − µk
i )

2

2σk
i + σ1

)

(9)

3.5. Confidence based Memory Retrieval

The pipeline of memory retrieval on EMN is shown in
Fig. 1(d). After the input features of an instance are fed
to the entrance nodes and propagated in the network, the
ith node will receive the memory signal m̂i as Eq (5) and
retrieve its memory unit to gain the conditional probability
inference as follows:

Pr(y = k|m̂i) =
Q(m̂i|y = k)∑C
c=1 Q(m̂i|y = c)

(10)

Here Q(m̂i|y = k) indicates the fuzzy memory distribution
(Eq (9)) achieved at the memory storage stage. The most
likely class label predicted by the ith node is

Ki = argmax
k

Pr(y = k|m̂i) (11)

The confidence of the node to make the prediction can be
defined as the likelihood of the memory signal as follows:

ci = Q(m̂i|y = Ki) (12)

The final decision of the whole network is defined as the
confidence-based fusion of the predictions of all neurons:

Pr(y = k|X) =
ciPr(y = k|m̂i)∑N

j cj
(13)

The predicted label is as follows:

ŷ = argmax
k

Pr(y = k|X) (14)

3.6. Reinforced Memorization for Domain Adaptation

The pairs of samples and pseudo labels {(X, ŷ)} can be fed
to EMN to conduct reinforced memorizing of the association
between the features and labels by updating the parameters
according to Eq (7) and (8).

As reported by (Litrico et al., 2023), the noise of pseudo
labels affects the performance of UDA significantly, which
may bring the accumulation of errors and make the model
over-fit the wrong prediction. To reduce the oscillation of
the model caused by the noise, we introduce the confidence
Ei of parameter updating on the node i by measuring the
likelihood that the node makes the same prediction as the
pseudo label ŷ:

Ei(m̂i, ŷ) = Q(m̂i|y = ŷ) (15)

Then the updating of parameters in Eq (7) and (8) is rewrit-
ten as follows:

µŷ
i = βµŷ + (1− β)

1

B

B∑
b=1

Ei(m̂
ŷ
i,b, ŷ)m̂

ŷ
i,b (16)

σŷ
i,b = βσŷ

i,b + (1− β)
1

B

B∑
b=1

Ei(m̂
ŷ
i,b, ŷ)

√
(m̂ŷ

i,b − µŷ
i )

2

(17)

The pseudo label with higher confidence on a neuron node
will achieve higher weight to update the parameters on the
node. After updating the parameters, the model can gener-
ate new pseudo labels on the unlabeled data. In this way,
the updating can be run in multiple iterations to reinforce
the memorization in a self-supervised way, so as to make
the learned distribution approach the ground-truth target
distribution, which is based on the supervised learning on
the target domain, as shown in Fig. 4.

4. Experiments
4.1. Experimental Setup

Datasets. Comprehensive experiments for DAMap are con-
ducted on the following four popularly used cross-domain
datasets:

• Digits: The classic digit image datasets from 3 differ-
ent domains: MNIST (LeCun et al., 1998) (M), USPS
(Hull, 1994) (U), and SVHN (Netzer et al., 2011) (S).
Following the evaluation protocol of CyCADA (Hoff-
man et al., 2018), three cross-domain transfer tasks
are evaluated : USPS to MNIST (U → M), MNIST to
USPS (M → U), and SVHN to MNIST (S → M).

• Office-31: Office-31 Dataset (Saenko et al., 2010) is
the most widely used dataset for visual domain adap-
tation, consisting of 4,110 images from 31 categories
collected from three different domains: Amazon (A),
Webcam (W) and DSLR (D). All possible combina-
tions of the domains are tested as the transfer tasks.

• Office-Home: Office-Home dataset (Venkateswara
et al., 2017) is a challenging medium-sized benchmark
with four distinct domains containing 65 categories:
Artistic images (A), Clip Art (C), Product images (P),
and Real-World images (R). All possible combinations
of the domains are tested as the transfer tasks.

• VisDA-C: VisDA-C (Peng et al., 2017)is a challenging
large-scale benchmark that mainly focuses on the 12-
class object recognition task containing two domains:
the Synthesis(S) which contains 152 thousand syn-
thetic images generated by rendering 3D models, and
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EMN: Brain-inspired Elastic Memory Network

Table 1. Accuracy(%) of DAMap methods on VisDA-C.

Method S → R R → S Avg.

w/o DA 54.83 65.06 59.95
BLS 59.43 75.05 67.24
KNN 58.60 66.70 62.65
DCT 32.50 47.59 40.05
RFS 49.30 66.22 57.76
MLP 57.84 72.13 64.99
SVM 53.60 68.64 61.12
BAG 59.02 67.43 63.23
NBY 46.75 78.19 62.47

XGBoost 47.62 66.27 56.95
EMN(OURS) 62.47 81.68 72.08

Table 2. Accuracy(%) of DAMap methods on Digits

Method S → M M → U U → M Avg.

w/o DA 72.36 79.16 87.27 79.60
BLS 80.80 92.45 93.88 89.04
KNN 77.62 92.07 91.70 87.13
DCT 56.04 77.43 66.24 66.57
RFS 73.83 91.19 88.54 84.52
MLP 77.14 91.57 92.06 86.92
SVM 75.45 92.57 91.64 86.55
BAG 78.36 92.68 92.46 87.83
NBY 81.12 91.75 89.53 87.47

XGBoost 73.07 89.78 87.39 83.42
EMN(OURS) 82.45 91.18 93.79 89.14

the Real(R) which has 55 thousand real object images
sampled from Microsoft COCO. All possible combina-
tions of the domains are tested as the transfer tasks: S
→ R, and R → S.

Evaluation Metrics. Following the definition of the
DAMap challenge, we train the model on the labeled source
domain and optimize it based on the unlabeled data in the
target domain while freezing the feature extractor. The ac-
curacy of classification and timing cost is evaluated in the
target domain.

Baselines of DAMap. EMN is compared with the following
DAMap baselines, which are commonly used classifiers to
map features to labels.

• MLP (Rosenblatt, 1958; Rumelhart et al., 1986). The
Multi-layer Perceptron with a hidden layer having 3096
units and a ReLU activation.

• BLS (Chen & Liu, 2017). The Broad Learning System
with 500 enhancement nodes is used and performs 5
incremental steps.

• SVM (Cortes & Vapnik, 1995). The Radial Basis Func-
tion (RBF) kernel is used with the gamma parameter
set to ‘auto’ in sklearn.

• KNN (Cover & Hart, 1967; Altman, 1992). The KNN
model ‘KNeighborsClassifier’ from sklearn with 5

neighbors and uniform weights.

• DCT (Quinlan, 1987). The Decision Tree model with
the default configuration from sklearn.

• XGBoost (Chen & Guestrin, 2016). The number of
trees is 100 and the maximum depth of each tree is 6.
The learning rate is set to 0.3 to control the step size
during the gradient boosting process.

• RFS (Breiman, 2001). The Random Forest model
using ‘RandomForestClassifier’ from sklearn with
100 estimators.

• BAG (Breiman, 1996). The Bagging method ensem-
bling 10 KNN base models.

• NBY (Hand & Yu, 2001). The Naive Bayesian algo-
rithm using the default configuration from sklearn.

Furthermore, we use ‘w/o DA’ to indicate transferring the
model directly without any further fine-tuning on the target
domain.

Baselines of UDA. We also compare EMN with the follow-
ing typical UDA methods.

• DANN (Ganin & Lempitsky, 2015) is a classical ad-
versarial UDA method based on the Gradient Reverse
Layer.

• CDAN (Long et al., 2018) is a conditional adversarial
UDA method which utilizes the discriminative infor-
mation in classifier labels to align deep features accross
different domains.

• SHOT (Liang et al., 2020) adopts self-supervised
pseudo-labeling to implicitly align representations
from the target domains to the source hypothesis.

• TPDS (Tang et al., 2024) propose a target prediction
distribution searching paradigm to overcome the do-
mian shift.

Network Configurations of DAMap. Under the setting
of Domain Adaptive Feature Mapping (DAMap), the fea-
ture extractor is frozen while only fine-tuning the mapping
between features and output labels. For a fair comparison,
EMN and all baselines of DAMap use the same frozen fea-
tures coming from the same feature extractors.

In particular, we utilize the LeNet-5(LeCun et al., 1998) as
the feature extractors for the simple digital recognition task
in the Digits dataset. For the object recognition tasks, we
adopt the pre-trained ResNet (He et al., 2016) models as
feature extractors (ResNet-101 for VisDA-C, and ResNet-50
for Office-31 and Office-Home), following the experimental
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Table 3. Accuracy(%) of DAMap methods on Office-31

Method A → D D → W W → A Avg.

w/o DA 80.52 94.72 63.15 79.04
BLS 80.92 94.84 65.99 80.44
KNN 89.96 94.97 62.80 82.34
DCT 41.37 39.87 24.99 36.18
RFS 81.53 89.69 58.71 77.16
MLP 84.34 94.21 64.71 80.44
SVM 83.53 94.72 62.41 79.62
BAG 87.34 95.60 64.11 82.64
NBY 84.34 92.58 65.32 80.76
XGB 70.88 71.95 41.39 61.41
EMN 92.15 97.48 70.35 86.08

Figure 2. Accuracy versus the average domain adaptation time per
instance in different DAMap methods on the S → R task of the
VisDA-C dataset.

configurations in previous works like (Deng et al., 2019),
(Xu et al., 2019), and (Peng et al., 2019).

While training the feature extractors on the source domains,
we adopt mini-batch stochastic gradient descent (SGD) with
the momentum as 0.9, weight decay as 1e−3, and learn-
ing rate η = 1e−3 in VisDA-C and 1e−2 in other datasets.
The batch size is set to 64. All DAMap methods are opti-
mized based on frozen features by running 16 epochs over
their self-generated pseudo labels, and the best results are
recorded.

In EMN, the number of hub nodes and bridging nodes are
both 50, the in-degree of the bridging nodes is 30, and the
maximum iterations of propagation T is set as 3 by default.

4.2. Experimental Results

Tables 1, 2, 3, and 4 show the classification accuracy of each
DAMap algorithm on the VisDA-C, Digits, Office-31, and
Office-Home datasets respectively. It can be observed that
EMN has the highest average accuracy across all datasets.
Particularly on the S → R task on the most challenging
dataset VisDA-C with the largest size, EMN increases the
accuracy more than 10% compared with the ANN model
MLP. Similarly, in the Office-Home and Office-31 datasets,
EMN outperforms the other baselines significantly, show-
casing its potential as a general classifier in domain adap-

0 2 4 6 8 10 12 14
epoch

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

BAG
BLS
KNN
NBY
RFS
SVM
MLP
DCT
XGBoost
EMN

Figure 3. The accuracy in different epochs of domain adaptation
on the P → A task of the Office-Home dataset.

Figure 4. The updating of the memory unit on a neuron while
performing the domain adaptation from MNIST to USPS in the
Digits dataset.

tation. Fig 2 further illustrates the average time required
for self-supervised domain adaptation per sample on the
VisDA-C datasets. EMN surpasses all other classifiers sig-
nificantly, reducing 87% time compared with traditional
neural network MLP, which is utilized in most UDA meth-
ods as the classifier to map deep features to labels in the last
layers of the visual models. EMN is even twice faster than
the light-weight NBY model, indicating its good potential
for real-time domain adaptation tasks. More results on all
datasets are given in the appendix.

We also compare the performance of EMN with typical
UDA methods in Table 5. Without heavy fine-tuning of
deep features, the time cost of model optimization in EMN
is less than 1% of the traditional UDA models, especially
in the cases of Office-31 and Office-Home where complex
deep backbone networks are deployed. Moreover, even
only fine-tuning the feature mapping, EMN can achieve
comparable accuracy with the UDA methods.

Fig. 3 further depicts the accuracy of the models over the
epochs of learning pseudo labels on the target domain of
the Office-Home dataset. More results on all datasets are
provided in the appendix. In all cases, EMN can improve the
performance steadily, which benefits from the confidence-
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Table 4. Accuracy(%) of DAMap methods on Office-Home

Method A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P Avg.

w/o DA 44.60 68.53 75.07 54.10 63.51 65.60 53.15 40.28 72.48 66.17 46.94 78.55 60.75
BLS 47.03 71.59 75.88 55.34 66.19 67.57 54.59 44.33 74.11 65.84 50.20 78.58 62.60
KNN 44.19 67.11 71.63 54.38 64.72 65.64 56.37 45.52 74.59 66.79 52.39 79.21 61.88
DCT 14.39 24.19 30.62 17.26 23.43 26.83 16.89 13.06 31.63 27.28 17.55 39.20 23.53
RFS 40.87 60.04 68.60 48.54 58.75 60.45 47.88 38.95 69.45 63.21 46.85 76.44 56.67
MLP 46.12 66.77 73.24 54.59 64.18 66.26 54.42 43.99 73.79 66.50 50.13 78.85 61.57
SVM 47.15 69.85 74.86 52.32 63.26 64.59 51.59 42.11 72.71 65.18 48.29 77.90 60.82
BAG 45.15 67.65 72.83 52.74 65.58 64.98 56.00 45.29 74.94 66.96 52.00 78.76 61.91
NBY 48.73 72.58 77.55 52.58 67.81 67.82 50.47 40.32 72.05 60.85 47.10 76.66 61.21
XGB 36.75 54.56 63.87 36.59 48.73 49.67 32.55 29.23 56.81 50.52 35.78 66.93 46.83

EMN(OURS) 50.39 76.48 76.91 59.27 71.11 69.65 59.89 47.30 76.47 69.54 53.90 81.03 66.00

Table 5. Accuracy and training time per sample in UDA methods.

Method Digits Office-31 Office-Home

Acc. (%) Time (ms) Acc. (%) Time (ms) Acc. (%) Time (ms)

CDAN 93.1 25.12 86.5 287.95 63.8 686.82
SHOT 98.1 2.88 88.6 67.77 71.8 81.14
TPDS 98.4 23.52 90.2 85.12 73.5 120.61
EMN 90.1 0.37 85.4 0.32 65.5 0.57

Table 6. Classification accuracy(%) of the variation models, where
G indicates the Gaussian blur based fuzzy memory and C indicates
the confidence based optimization.

Dataset base base+G base+G+C

Office-31 73.46 85.45 86.08 ↑12.62
Office-Home 42.54 64.98 66.00 ↑ 23.46

Digits 60.68 88.94 89.14 ↑28.46
VisDA-C 35.94 70.97 72.08 ↑36.14

average 53.16 77.59 78.33 ↑25.17

based parameter updating in Eq (16) and (17). It can also be
observed that MLP faces a significant drop in performance
in some cases, which may be caused by the accumulated
errors of noisy pseudo labels.

Visualization Results. Fig. 4 depicts how the memory
units evolve along with the iterations of domain adaptation,
and highlights the changing of the Gaussian distributions
consistent with Eq (7) and (8). After multiple rounds of
self-supervised learning on pseudo labels, the distributions
effectively approach the target distribution, which corre-
sponds to the model supervised trained using the labels on
the target domain. This validates the remarkable effective-
ness of EMN in DAMap.
Ablation study. The fuzzy memory based on the Gaus-
sian blur in Eq (9) and the confidence based optimization
in Eq (16) and (17) play important roles in increasing the
robustness of the memory storage and retrieval. Their effec-
tiveness is tested by the ablation studies in Table 6. It can
be observed that the Gaussian blur has a great impact on the
performance, which confirms the importance of introducing
the fuzzy memory to reduce the overfitting of the distribu-
tion function. Table 6 also shows that the combination of all

components can achieve the best performance.

4.3. Parameter Analysis

In order to investigate the impact of network scale on the
performance of domain adaptation, we conducted a sensitiv-
ity analysis of the number of hub nodes and bridging nodes
by simultaneously increasing the number of both types of
nodes as Fig. 5. It can be observed that the performance
gradually improves as the network scale increases, and rela-
tively high performance can be achieved when the number
reaches 50.

Figure 5. Accuracy versus the number of Hub/Bridging nodes in
the Office-31 dataset

Conclusion
In this paper, we propose a novel brain-inspired Elastic
Memory Network model, namely EMN, to support efficient
Domain-Adaptive Feature Mapping. In particular, EMN
learns the association between the features and labels based
on the distributed memories on the neurons through impulse-
based information transmission and accumulation. EMN is
also able to utilize its prediction results on unlabeled data to
perform reinforced memorization to support quick domain
adaptation. Comprehensive experiments show the superior
performance and the low timing cost in EMN, which indi-
cates that EMN has good potential to be run on edge devices
for continuous optimization.

In the future, we will further explore the relationship be-
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tween the performance and the network topology of EMN
inspired by biological neural networks. Meanwhile, we will
also extend EMN to support more learning tasks, including
the multi-modal DAMap problems, to verify the power of
distributed memorization.

Impact Statement
Our research presents a novel brain-inspired neural network
to support quick domain adaptation and open a new way
of machine learning to model the classification problem
as distributed memorization of associations between input
signals and labels.
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A. More Experimental Results
A.1. Full Results of Classification Accuracy on Office-31

The full table of the classification accuracy on the Office-31 datasets covering all cases of domain transferring is shown in
Table 7.

Table 7. Classification accuracy(%) of all tasks on the Office-31 Dataset

A → D A → W D → A D → W W → A W → D Avg.

DT 80.52 76.73 60.53 94.72 63.15 98.59 79.04
BLS 80.92 79.37 62.12 94.84 65.99 99.40 80.44
KNN 89.96 84.78 61.91 94.97 62.80 99.60 82.34
DCT 41.37 35.97 21.44 39.87 24.99 53.41 36.18
RFS 81.53 77.23 56.59 89.69 58.71 99.20 77.16
MLP 84.34 79.75 60.63 94.21 64.71 99.00 80.44
SVM 83.53 77.99 59.89 94.72 62.41 99.20 79.62
BAG 87.34 87.04 62.34 95.60 64.11 99.40 82.64
NBY 84.34 81.64 63.26 92.58 65.32 97.39 80.76
EMN 92.15 88.92 68.18 97.48 70.35 99.40 86.08

A.2. Accuracy versus Timing Cost on all Datasets

The full results about the accuracy and timing cost of different DAMap models are shown in the following Fig. 6, Fig. 7,
Fig. 8, and Fig. 9.

(a) M → U (b) S → M (c) U → M

Figure 6. Accuracy versus the average domain adaptation time per instance on the Digits dataset.
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(a) S → R (b) R → S

Figure 7. Accuracy versus the average domain adaptation time per instance on the VisDA-C dataset.

(a) A → D (b) A → W (c) D → W

Figure 8. Accuracy versus the average domain adaptation time per instance on the Office-31 dataset.

(a) A → C (b) A → P (c) A → R

Figure 9. Accuracy versus the average domain adaptation time per instance on the Office-Home dataset dataset.

A.3. Accuracy in Different Epochs of Domain Adaptation

The accuracy of different models in different epochs of domain adaption is shown in Fig. 10, Fig. 11, Fig. 12, and Fig. 13.

A.4. Visualization

Fig. 14 depicts the memory units of randomly chosen neurons intuitively, which show diverse memory patterns on different
neurons.

Based on the thresholding accumulation of transmitted signals, neurons can generate impulse signals like Fig. 15, which
shares the similar intermittent property with the spiking activities in brains (Maass, 1997). On each round of propagation,
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(a) A → C (b) A → P (c) C → A

Figure 10. The accuracy in different epochs of domain adaptation on the Office-Home dataset.

(a) A → D (b) D → A (c) W → A

Figure 11. The accuracy in different epochs of domain adaptation on the Office-31 dataset.

(a) R → S (b) S → R

Figure 12. The accuracy in different epochs of domain adaptation on the VisDA-C dataset.

only a portion of nodes are activated in the network and the left accumulate the signals in their hidden states.
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(a) M → U (b) S → M (c) U → M

Figure 13. The accuracy in different epochs of domain adaptation on the Digits dataset.
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Figure 14. Visualization of the memories on six randomly chosen neurons after training on the Office-31 dataset
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Figure 15. The change of the activation states and the output signals oi,t of the neurons in different iterations of signal propagation. For
simplicity, we only show the nodes here while ignoring the connections. The green nodes indicate the activated ones with non-zero output.
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