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Abstract—Network representation learning (NRL) has
far-reaching effects on data mining research, showing its
importance in many real-world applications. NRL, also known
as network embedding, aims at preserving graph structures
in a low-dimensional space. These learned representations
can be used for subsequent machine learning tasks, such as
vertex classification, link prediction, and data visualization.
Recently, graph convolutional network (GCN)-based models,
e.g., GraphSAGE, have drawn a lot of attention for their
success in inductive NRL. When conducting unsupervised
learning on large-scale graphs, some of these models employ
negative sampling (NS) for optimization, which encourages
a target vertex to be close to its neighbors while being far
from its negative samples. However, NS draws negative vertices
through a random pattern or based on the degrees of vertices.
Thus, the generated samples could be either highly relevant
or completely unrelated to the target vertex. Moreover, as the
training goes, the gradient of NS objective calculated with
the inner product of the unrelated negative samples and the
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target vertex may become zero, which will lead to learning
inferior representations. To address these problems, we propose
an adversarial training method tailored for unsupervised
inductive NRL on large networks. For efficiently keeping
track of high-quality negative samples, we design a caching
scheme with sampling and updating strategies that has a wide
exploration of vertex proximity while considering training costs.
Besides, the proposed method is adaptive to various existing
GCN-based models without significantly complicating their
optimization process. Extensive experiments show that our
proposed method can achieve better performance compared
with the state-of-the-art models.

Index Terms— Adversarial learning, graph neural network,
inductive learning, negative sampling (NS), network embedding.

I. INTRODUCTION

RAPH structures, e.g., citation networks and social
Gnetworks, are ubiquitous and fast-growing in the real
world. Network representation learning (NRL) can map the
semantic similarity of graph vertices into a low-dimensional
vector space where similar vertices are assigned to the nearby
areas [1]. The learned representations are useful for the
subsequent applications, such as vertex classification [2], link
prediction [3], and data visualization [4]. As demonstrated
in the above applications, more discriminative representations
of vertices would benefit for the better performance of the
downstream tasks. Thus, the key to the success of the down-
stream applications is learning discriminative representations
of vertices.

In general, current developments in NRL mostly fall into
two categories: transductive learning and inductive learning.
For example, DeepWalk [2], Line [5], Node2vec [3], and graph
convolutional network (GCN) [6] are transductive models,
which requires that all vertices in networks are present during
the training process of NRL. Though these models can perform
well in the training data, they could not be generalized to
unseen vertices. Notice that, among them, GCN obtains a
lot of attention for its first proposing an efficient variant of
convolutional neural networks that can operate directly on
graphs.

Therefore, inductive GCN-based learning models, such as
GraphSAGE [7], graph attention network (GAT) [8], and
FastGCN [9], are recently proposed to generate vertex embed-
dings for unseen vertices. However, as stated by the authors,
GAT is not suitable for large-scale networks since its intense
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When using GraphSAGE in unsupervised NRL, we can see that the following holds. (a) For the target vertex 1, vertices 2 and 3 may be generated as

the negative vertices by the original NS method, whereas vertex pair (1, 2) is highly relevant and pair (1, 3) is totally unrelated. (b) Our proposed adversarial
sampling method can generate more appropriate negative sample such as vertex 4 in the above example. Note that the details of the aggregators will be

introduced in Section II-C.

computation of attention coefficients. Moreover, when apply-
ing these approaches to fully unsupervised NRL, they may
suffer from a gradient vanishing problem during the opti-
mization, because in the unsupervised setting, negative sam-
pling (NS) [10] is an important step in NRL, which encourages
a target vertex to be close to its neighbors while being far
from its negative samples. Nevertheless, NS draws negative
vertices through a random mode or based on the degrees
of vertices, and then, the generated samples could be either
highly relevant or completely unrelated to the target vertex (an
example of using GraphSAGE with NS is shown in Fig. 1).
In addition, as training goes, the gradient evaluated with the
sampled unrelated negative vertices may become zero because
these negative samples would be far away from the target
vertex in the embedding space and the gradient calculated by
activation functions (e.g., sigmoid function) could be a very
small number. As a result, the NRL process will be stuck
by the gradient vanishing problem, which leads to inferior
representation learning.

In essence, the major problem of NS is that it models
negative samples with a fixed scheme, which ignores the
dynamic changes of embedding features during the training.
Recently, generative adversarial networks (GANs) [11] and its
variants [12], [13] have shown promising ability to capture
complex distributions, which is a potential replacement of the
fixed scheme in NS. However, the integration of GAN and NS
is not seamless since keeping track of the dynamic negative
sample distribution for each vertex is inefficient.

To balance efficiency and effectiveness, in this article,
we design an adversarial caching scheme with sampling and
updating strategies that has a wide exploration of vertex prox-
imity while considering training costs. Our proposed method,
called AdvCaching, is adaptive to the existing well-established
GCN-based models. We implement our idea by building
upon GraphSAGE for its popularity. The discriminator in
AdvCaching is trained to optimize the objective functions
of NRL as in the previous models. Also, the generator in

it can be regarded as an auxiliary, which learns high-quality
negative samples and pushes the discriminator to its limit in
representation learning. Specifically, in initialization, we ran-
domly select negative samples into a cache. Then, we use the
combination of uniform sampling and probabilistic updating
strategies to maintain this cache during the training. In general,
our well-designed caching scheme can capture the dynamic
changes of high-quality negative samples while exploring as
more the potentially negative ones as possible. The main
contributions of this article can be summarized as follows.

1) We propose an adversarial training method, Adv-
Caching, which is tailored for unsupervised inductive
NRL on large-scale graphs by building upon Graph-
SAGE. As a principle, the proposed method can also
be applied to other GCN-based models.

2) Specifically, we employ a discriminator that contains the
original neural network structure as GraphSAGE. Also,
we leverage a generator to make an effect of structure
distillation [14], which has fewer parameters compared
with the discriminator for modeling negative sample
distributions.

3) To improve the tracking efficiency of the dynamic neg-
ative sample distribution for each vertex, we employ
the combination of uniform sampling and probabilistic
updating strategies to maintain a caching scheme for the
sample generation.

4) We conduct extensive experiments on the subsequent
application tasks to evaluate the quality of the repre-
sentations learned by AdvCaching. Experimental results
show that our proposed method can achieve signifi-
cant and consistent improvements over state-of-the-art
models.

The code and datasets will be released at the revision stage.
The rest of this article is organized as follows. In Section II,
we first give preliminaries. In Section III, we introduce the
core idea of our proposed model and present the AdvCaching
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algorithm. We discuss the experimental results in Section IV
and show the related work in Section V. Section VI concludes
our work.

II. PRELIMINARIES

In this section, we first give the problem formulation
and notations. Then, we will introduce the general idea of
GraphSAGE that is selected as a base model for the proposed
AdvCaching.

A. Problem Formulation and Notations

In NRL tasks, we denote a network as G = (V, E), where V
is the set of vertices and E C V x V denotes the set of edges.
For each vertex v € V, NRL aims to learn a low-dimensional
embedding v € R, which preserves the network proximity.
Here, d < | V| represents the dimension of the representation
space.

As mentioned before, classical NRL approaches based on
transductive learning cannot generalize to unseen vertices.
To perform inductive learning, models need to allow embed-
dings to be efficiently generated for the unseen vertices.
GraphSAGE is one of the state-of-the-art models for inductive
NRL, which is introduced as follows.

B. Objective of GraphSAGE in Unsupervised Inductive NRL

As stated in GraphSAGE [7], the authors employ NS [10]
to learn vertex representations in an unsupervised setting. The
objective function of GraphSAGE is defined as follows:

K
W) = ~log(a (v} ¥)) = 3 B -nylog(o (~v] -v1)
j=1
(H

where v; is a target vertex, v, is its neighbor vertex (there is
an edge between them in datasets), ¢ is the sigmoid function,
ie.,0(x) = 1/(1+exp(—x)), Pxs is a uniform NS distribution
involving all vertices, v; is a negative sample drawn from
Pxs, K is the number of negative samples for the estimation,
and the representations, i.e., vp, vj, and vj, are aggregated
from the features contained within their local neighbors. The
details of the aggregation methods will be introduced in
Section III-C. This objective aims to encourage nearby vertices
to have similar embeddings while being distinct to their
negative vertices.

C. Aggregation Methods in GraphSAGE

There are three aggregation methods in GraphSAGE,
including mean aggregator, LSTM aggregator, and pooling
aggregator [7]. For an illustration of integrating the proposed
AdvCaching method into GraphSAGE, we use the mean
aggregator as an example, which is defined as follows:

v/ < o (W'- CONCAT(v'"', MEAN({v,"!, Vv, € N(0)})))
)

where MEAN denotes the elementwise mean of the vectors,
CONCAT represents vector concatenation, W’ is the weight

matrices of layer /, v/ is the embedding vector in layer I, o
is the sigmoid function, and NV'(v) denotes the neighbors of
vertex v. From (2), we can see that GraphSAGE is able to
aggregate the neighbor representations of unseen vertices for
inductive learning.

III. PROPOSED ADVCACHING METHOD

In this section, we will present the core idea of the
proposed AdvCaching method by using GraphSAGE as the
base model (an overview of the training framework is shown
in Fig. 2), followed by detailed descriptions of its components.

A. AdvCaching GraphSAGE

As mentioned in the preliminaries, GraphSAGE adopts NS
in NRL but with fixed distributions. Specifically, the original
NS is based on a uniform distribution or vertex degrees, and
thus, the vertices with higher degrees are more likely to be
drawn as the negative samples [10]. Therefore, NS cannot
consider the dynamic changes of embeddings in the train-
ing process and may encounter the gradient vanishing prob-
lem. Recently, GAN’s technique [11] has shown promising
capability in monitoring complex distributions, which is a
potential replacement of NS. In this article, we leverage a
generator that can bring high-quality negative samples to
the discriminator for NRL. As shown in Fig. 2, given the
input edges of the network, we first estimate their negative
vertex distributions with the generator. Then, we could sam-
ple high-quality negative vertices with the designed caching
scheme. Finally, the discriminator performs representation
learning. Here, we employ GraphSAGE as the base model
in the discriminator for illustration. The followings are the
detailed descriptions of AdvCaching components.

B. Generator in AdvCaching GraphSAGE

To leverage embedding features for obtaining high-quality
negative samples which can bring high gradient loss to the
discriminator, we exploit a generator G with softmax function
to model the negative candidate distribution, which is defined

as follows:
exp(vi VJT)

> ev exp(vievy)

where v; is the target vertex, v; is the negative candidate, V
denotes the whole set of vertices, and 6 represents the union
of all vertex embeddings in the generator.

1) Aggregation of Negative Vertex Embedding: After com-
puting the above generator G, we can sample a negative
vertex v; ~ G(v;;0g) as a substitute for v; ~ Pygs in (1),
where Pyg denotes the original fixed distribution of negative
samples in NS and we use the generator G to replace Pys
for monitoring the dynamic changes of the negative sample
distribution. Then, the aggregate embedding of each negative
vertex v; in GraphSAGE can be further represented as follows:

G(l)jll)i;e(;) = (3)

vl < Mean-Aggregate' (v;),v; ~ G(v;; 6c) (4)
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Fig. 2. Overview of the AdvCaching GraphSAGE framework. The generator aims to provide high-quality negative vertices by a well-designed cache scheme
and the reward from the discriminator. Also, the discriminator learns the vertex representations based on the edges and the provided negative vertices.

where Mean-Aggregate (-) denotes the right-hand side of (2).
To sum up, from (3) and (4), we can see that the generator
G can well consider the dynamic change of embedding fea-
tures and provide a concise connectivity distribution for each
target vertex. The softmax calculation is intuitive, however,
the summation term inside (3) is computationally inefficient
because it involves all vertices for each target vertex, especially
for real-world large-scale graphs that may contain millions of
vertices.

2) Generator Optimization: To address the aforementioned
problems, we employ a cache scheme for the softmax function.
Then, the calculation space of the summation term in (3) can
be simplified to the caching space. Specifically, the generator
optimization G is formulated as follows:

exp(v,- VJT)
2 ec exp(vi . V]T)

where C is the cache of vertices, generally |C| <« |V|
(the details of the cache design will be introduced in
Section III-E), and o; is the negative vertex in C. Thus,
the summation term of (5) only takes the slight expense of
computation costs, reducing from |V| to |C|. Next, the loss
function of the generator can be defined as follows:

L:@ = Z Ev‘f~5(~\vi;96)D(vi5 l)j; 9D) (6)
v;eB

a(vjlvi;ﬁg) = 5)

where B denotes a batch in the training process, v; represents
the negative vertex, @p is the union of all vertex embeddings in
the discriminator, and D(-) indicates the discriminator function
[we define it as the sigmoid function, i.e., D(v;,v;;0p) =
a(vi - vi) = 1/(1 + exp(=v; - v]))]. Note that ) and 05
denote the embedding vectors from the discriminator and
generator, respectively, where they do not share the embed-
dings. In a nutshell, this formulated generator aims to sample
high-quality negative vertices, i.e., v;, from the cache C with
the softmax probability distribution, which can prevent from
generating totally unrelated vertices when using the uniform
sampling. However, the sampled output of the generator

is a discrete index of the cache. Therefore, the stochastic
gradient descent (SGD) method cannot be directly used for
optimization. According to [15] and [16], we can use a policy
gradient-based reinforcement learning method to optimize the
generator loss as follows:

V95£§
= Vo, Z ]Euj~6(-\ui;05)D(0i, Vj; 90)
l),‘EB
= ZEv‘f~6(~|Di;Ha)D(vi;Uj§ 0p) Vo 102G (v;lvi; 05) (7)
v,eB

where the gradient of Lz is an expected summation of Vg log
G (cylvs; 65) weighted by D(-), which is calculated with the
discriminator. In the field of reinforcement learning, D(:)
in (7) can be regarded as a reward function and the generator is
trained to maximize the expected reward. In order to achieve
a higher reward, for each negative pair (v;,v;), the policy
used by the generator network would punish trivial negative
vertices by lowering down their corresponding probability and
encourage the discriminator network to distribute high-quality
negative vertices, i.e., pair (v;, v;) with higher similarity from
the discriminator parameterized by 6p will be encouraged to
be generated. Moreover, in practice, the reinforcement-based
algorithms may suffer from unstable performance and receive
high variance results [17]. According to [18], this problem can
be alleviated by adding a baseline function to the reward term
in the gradient loss. Then, D(-) can be replaced by

ZBE’P ZuieB ED‘f’\‘é(“Ui§96)D(vi’ vj; QD)
[P|

where P denotes the whole batches in an epoch, and the
baseline function is the average reward of epochs obtained
in the training process.

D(v,-,vj;HD)-i- (8)

C. Discriminator in AdvCaching GraphSAGE

The discriminator of our proposed AdvCaching Graph-
SAGE aims to perform unsupervised inductive NRL with the
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high-quality negative samples constructed by the generator G.
The objective function of D is formulated as follows:

Lp = Z —logD(vi,vp;HD)
v, eB

K
N Z E“j“a(~|vf;05)log(D(—l)i, vj; HD))
j=1

FA(IVp 1%+ 1IVill2 + 11v;112) ©)

where B denotes a batch in the training process, v, denotes
the adjacent vertex of v;, v; is the negative vertex sampled by
using (5), [[||F is the Frobenius norm of vectors, {v,, v;, v}
are the embedding vectors in #p, and A is a harmonic factor
for regularization (we set it as le™5 in experiments). The
discriminator D can be optimized with the gradient descent
technique. An important distinction between this objective
function and the original one as shown in (1) is that the
negative vertex v; is sampled from the cache with softmax
function, instead of the uniform sampling. We can see that our
proposed method is adaptive to the GraphSAGE model without
significantly complicating its optimization process. Moreover,
as a principle, our method can also be extended to other
GCN-based models. We leave this discussion in Section III-F.

D. Minimax Form of the Final Loss

Without loss of generality, we provide the minimax form of
our method as follows:

min max V (G, D)
0(‘; 00

K
= Z logD (vi, vp: 0p) + ZEW~G(.|U,-;95)
v,eB j=1

xlog(1—=D(v;,v;; 0p)) (10

where G and D are playing a minimax game presented
with value function V (G, D). In general, generator G and
discriminator D act as two opponents: 1) generator G would
try to generate high-quality negative samples that are similar
to the target vertex v;’s real immediate neighbors to deceive
discriminator D and 2) on the contrary, discriminator D would
try to be far from these generated negative samples.

E. Caching Scheme

As mentioned before, though GAN’s technique can monitor
a complex generation process, it is inefficient to keep track
of the dynamic negative sample distribution for each vertex.
As shown in (5), we are motivated to cache high-quality
negative samples with large probabilities. In this way, we can
efficiently track the dynamic changes of embedding features
while exploring as more vertices as possible.

The overall training process of our proposed method with
the caching scheme is shown in Algorithm 1. To begin with,
we give the following notations.

Algorithm 1: Training Process of AdvCaching

Input: Graph G = (V, E), batch size |5|, emebding

dimension d, embedded cache C;, temporary
cache C,

Result: Parameters of Discriminator 6p and Generator 0g
1 begin
Initialize 6p, 0, and the cache of negative samples
C, randomly;
while not converge do
Sample a batch B from the edges of vertices;
Initialize the temporary cache Cj;
for G-steps do
for each edge (v;,v,) € B do
Index the cache C, to get the candidate
negative samples C;(v;);
9 Index the cache C, and uniformly
re-sampling candidates from the whole set of
vertices V into the cache C(v;);
10 Use G to sample quality negative vertex v
from the cache set C <— {C;(v;), C2(v;)}
according to Eq. (5);
11 Sample a new candidate negative cache from
C with probabilities calculated by Eq. (5) to
update Ci(v;);

[S]

w N e W

12 end

13 Update the parameters of 05 via policy gradient
in Eq. (7);

14 end

15 for D-steps do

16 For each edge (v;,v,) in batch B and the
sampled negative vertex v, calculate D loss
using (9);

17 Update the parameters of € via gradient
descent;

18 end

19 | end

20 end

Embedded Cache C;: We employ a cache C; € RIVI*M
to store candidate negative samples, where |V| denotes the
number of vertices, N; is the cache size, and N; < |V|. Note
that we represent C; as the embedded cache because it has
stationary memory costs during the training.

Temporary Cache C,: We use a temporary cache C, €
RIBIXN: to store the resampling vertices, where | B| is the batch
size, N, represents the resample size, and N, < |V|. We can
reuse the same temporary cache during the batch processing
for space saving.

In order to achieve the best performance, we need to well
define sampling and updating strategies (steps 9 and 11 in
Algorithm 1), which aims to have a wide exploration of vertex
proximity while considering training costs. The details are as
follows.

Uniformly Resampling Strategy (Step 9): This strategy con-
siders efficiency and aims to explore as more potential negative
vertices as possible. As the embedding features are changing
in the training process, the negative vertices in the cache C;
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will be outdated and not accurate. Thus, we need to explore
more possible vertices to update the cache. This motivates us
to adopt a uniform, sampler which is a simple and efficient
way to resample the candidate negative vertices of the network.
The time complexity is O(1). Besides, it is worth mentioning
that we also avoid selecting the direct neighbors of vertices
when constructing their resampling cache C,. Because it is
unlikely that there is an edge between two vertices, but they
are not related to each other.

Probabilistic Updating Strategy (Step 11): This strategy
aims to dynamically update the embedded cache C; during
the iterations. As the training goes, the gradient loss of (9)
may become zero if we fix the cache. To avoid the gradient
vanishing problem and obtain high-quality negative samples,
we draw vertices from the united cache C following the
probability calculated by (5), where C = {Cy(v;), C2(v;)} and
a higher probability means more relevance of the vertex pair.
Then, C; can be updated with the sampled vertices.

In summary, we exploit the above strategies to balance the
efficiency and the effectiveness of modeling negative sample
distributions. A larger size N, of the cache C,; means exploring
more potential negative vertices from the network. Also,
the uniform sampler is employed for its efficiency. In addition,
a bigger size N; of the cache C; implies keeping track of more
negative vertices. Also, the cache with the probabilistic update
is adopted for its effectiveness. Besides, since our method is an
extension for other GCN-based models, the time complexity
of our method is on par with them with addition computation
O(|VI(Ny + N»)d), where d is the embedding dimension.

Until now, we have introduced the training process of
Advcaching and its components, as shown in Fig. 2. More-
over, as a principle, our method can also be extended to
other GCN-based models without significantly complicating
their optimization processes. The details will be discussed in
Section III-F.

F. Models Extended by AdvCaching

In this section, we first elaborate on the principle of building
AdvCaching on GraphSAGE. Then, we show how to apply
AdvCaching to extend other GCN-based models.

As mentioned before, all of the GCN-based models, includ-
ing GraphSAGE, utilize NS [10] for the optimization in NRL.
The major idea of Advcaching is to replace NS with a defined
cache scheme. Specifically, the proposed generator can embed
this cache seamlessly, while the discriminator completes NRL
tasks with the base models. Moreover, this generator has fewer
parameters compared with the discriminator. For example,
GraphSAGE contains multiple layers and has complicated
forward propagation algorithms, i.e., mean aggregator, LSTM
aggregator, and pooling aggregator [7]. We can generalize
GraphSAGE to a discriminator, which contains the original
complex neural network structure. In the meantime, we use a
generator to model negative vertex distributions with only one
layer for structure distillation [14].

Note that the main difference between GraphSAGE and
other GCN-based models is the aggregator definition. For
instance, GCN [6] adopts a localized spectral convolutional

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
STATISTICS OF DATASETS

Datasets # of vertices |V| # of edges |E)| # of labels |L|
Cora 2708 5278 7
Citeseer 3264 4551 6
Wiki 2363 11596 17
DBLP_C4 17725 52914 4

aggregator, which is defined as follows:
vl <o (W -MEAN({v'"'} U {v} ", ¥, e N(0)})) (11)

where the variable meanings are the same as (2). We denote
the right-hand side of (11) as GCN-Aggregate'(-). Then,
the aggregate embedding of each negative candidate vertex
v; in GCN can be further represented as follows:

V]j < GCN-Aggregate' (z)j), vj~ 6(01'; (95) (12)

where v; ~ G (v;; 0z) represents that we use the proposed
generator G to sample negative vertices instead of the uniform
sampling adopted in the original GCN. Besides, following the
same principle, more base models, such as GAT [8], can also
be easily extended with the above generator.

IV. EXPERIMENTS

In the experiments, we evaluate the performance of our
proposed method in terms of vertex classification tasks on four
real-life networks. Moreover, we also investigate the parameter
influence on these tasks.

A. Datasets

We conduct experiments on four widely used network
datasets with the statistics listed in Table I, where L denotes
the label set.

Cora! is a research citation network constructed in [19].
It contains 2708 machine learning papers with seven labels.

Citeseer? is another extensively adopted research paper set,
which contains 3264 publications and six labels.

Wiki® is a language network that contains 2363 web pages
and 17 labels after preprocessing by deleting self-loops and
nodes with zero degrees.

DBLP_C4* consists of bibliography data in computer sci-
ence constructed by [20]. In the experiments, we select a list
of conference papers from four research fields: database, data
mining, Al, and CV.

To comprehensively evaluate the performance of models,
we conduct experiments on these datasets with or without
their nodes attributes. Specifically, on the Cora and Citeseer
datasets, we perform representation learning on the graph
adjacency with node features. For the Wiki and DBLP datasets,
we are only focused on connectivity patterns in networks.
One reason is that, in real-life scenarios, graphs without node
attributes are more common and easy to acquire. We also want

Thttps://people.cs.umass.edu/~mccallum/data.html
2https://github.com/wonniu/AdvTANE_WWW2019
3https://github.com/albertyang33/TADW

“http://arnetminer.org/citation (V4 version is used)
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TABLE 11
ACCURACY (%) OF VERTEX CLASSIFICATION ON CORA

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 63.00 68.57 70.31 70.03 71.42 71.49 71.46 71.40 | 73.43
AdvCaching-GAT 67.43 73.60 76.42 | 75.69 77.18 78.14 79.34 78.69 78.97
GCN 72.44 76.37 77.00 77.54 78.29 79.24 80.07 78.41 77.86
AdvCaching-GCN 75.64 | 77.99 78.01 78.09 78.73 79.15 80.44 78.78 79.34
GraphSAGE-mean 42.53 48.78 52.11 52.12 55.02 56.18 56.95 57.56 54.98
AdvCaching-mean 45.82 50.76 53.11 55.32 57.53 59.41 60.76 60.15 56.83
GraphSAGE-LSTM 68.17 73.56 74.95 74.52 75.63 76.94 78.97 78.41 76.75
AdvCaching-LSTM 71.21 76.42 77.43 77.05 78.06 78.69 | 79.95 79.15 79.70
GraphSAGE-maxpool 65.30 69.87 71.52 71.32 71.71 73.43 73.68 72.69 69.37
AdvCaching-maxpool | 67.39 | 71.34 73.31 72.62 75.04 74.82 | 75.40 75.65 69.74
GraphSAGE-meanpool | 68.46 71.34 73.05 72.68 74.52 75.83 77.49 77.31 74.17
AdvCaching-meanpool | 75.80 | 78.50 79.32 79.08 80.28 81.37 82.66 82.29 81.92

to evaluate the performance of GCN-based models on pure
graph adjacency.

B. Baseline Models

We employ several state-of-the-art GCN-based models as
the baselines, including GCN, GraphSAGE, and GAT. There
are many other NRL methods, but we do not consider
them here, because either their performances are inferior
to these baselines as shown in the corresponding papers
or they are transductive models that are inappropriate for
inductive NRL. The descriptions of the baseline models are as
follows.

GCN [6] first introduces an effective variant of convolu-
tional neural networks that can operate directly on graphs.
For inductive learning on large-scale networks, an improved
version of the GCN approach [7] is derived. We employ this
variant for comparison.

GraphSAGE [7] proposes an inductive manner for com-
puting vertex representations, which has yielded impressive
performance on several large-scale benchmarks. For each
vertex, GraphSAGE first samples fixed-size neighbors and
then performs an aggregate function over them to obtain
the vertex representations. There are four types of aggregate
functions, including GraphSAGE-mean, GraphSAGE-LSTM,
GraphSAGE-maxpool, and GraphSAGE-meanpool (a variant
of the maxpool aggregator, where the elementwise mean
pooling replaces the elementwise max pooling). One main dif-
ference between “meanpool” and “mean” is that “meanpool”
needs each neighbor’s vector to be independently fed through
a fully connected neural network.

GAT [8] leverages self-attentional layers to learn the impor-
tance weights of centered nodes’ neighbors.

As mentioned before, we implement the proposed
AdvCaching method by using GraphSAGE as the base model.
We denote the improved variants according to the aggregate
functions as follows: AdvCaching-GCN, AdvCaching-mean,
AdvCaching-LSTM, AdvCaching-maxpool, AdvCaching-
meanpool, and AdvCaching-GAT.

C. Parameter Settings and Evaluation Metrics

We follow the experiment setup in [7] to demonstrate the
effectiveness of our proposed method. Specifically, for the
discriminator of AdvCaching, we follow GraphSAGE [7] by
setting the number of network layers [ = 2, the hidden
dimension d = 128, and the neighborhood sample sizes of
layers S = 25 and S, = 10. For the generator of AdvCaching,
we set [ = 1 and d = 128 and use the Adam optimizer
[21] with the initial learning rate le~3. For the cache size,
we uniformly set N; = N, = 10. Besides, we adopt vertex
classification as the benchmark task for evaluating the learned
representations: using Liblinear package [22] with default
settings to build the classifier and employing classification
accuracy [4] as the metrics.

D. Vertex Classification

In this section, we conduct downstream multiclass classi-
fication tasks on four benchmark datasets, including Cora,
Citeseer, Wiki, and DBLP_C4, with the training ratios ranging
from 10% to 90%. We build the classifier using Liblinear
package [22] with its default setting. From Tables II-V,
we have the following observations.

The proposed AdvCaching method, built upon GraphSAGE
with adversarial learning components, consistently outper-
forms both GCN and the variants of GraphSAGE on four
datasets across all training ratios, only with some exceptions
in Wiki when the ratios are 10% and 20%. More specifi-
cally, the variants of AdvCaching achieve 5.9%, 9.6%, 7.2%,
and 6.5% performance gains over the variants of Graph-
SAGE on average of ratios in Cora, Citeseer, Wiki, and
DBLP_C4, respectively, while the accuracy improvements of
AdvCaching-GCN over GCN are 3.2%, 4.2%, 7.4%, and 5.2%,
respectively. In general, the experimental results validate that
AdvCaching can obtain benefits from the high-quality negative
samples generated by the proposed adversarial training frame-
work. This also confirms that our designed caching scheme
can keep track well of these negative sample generations.
Combined with Section III-F, we can summarize that the
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TABLE III
ACCURACY (%) OF VERTEX CLASSIFICATION ON CITESEER

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 61.82 63.02 65.11 65.85 66.49 67.47 66.60 64.71 63.86
AdvCaching-GAT 62.16 63.81 64.90 66.70 67.27 66.87 66.90 66.82 66.87
GCN 63.50 65.25 66.32 67.30 67.21 67.77 68.71 69.23 68.07

AdvCaching-GCN 65.65 | 67.51 | 68.69 | 69.52 | 70.23 | 70.79 | 71.53 | 70.44 | 68.67

GraphSAGE-mean 42.17 47.47 51.70 53.52 55.13 54.87 56.54 54.75 53.31
AdvCaching-mean 45.05 49.13 51.92 54.83 55.80 55.85 58.45 58.97 58.13

GraphSAGE-LSTM 64.84 | 6543 66.71 67.35 67.93 67.70 | 68.71 68.48 68.37
AdvCaching-LSTM 65.95 67.06 | 68.35 69.16 | 69.63 | 6943 | 7042 | 69.68 69.88

GraphSAGE-maxpool 62.86 64.49 65.20 65.69 66.91 67.09 67.91 67.57 67.17
AdvCaching-maxpool | 64.51 66.26 66.93 67.35 68.96 69.21 68.91 68.17 69.78

GraphSAGE-meanpool 62.70 65.43 66.93 66.75 66.67 66.79 67.51 67.57 67.77
AdvCaching-meanpool | 63.17 66.79 67.53 67.96 68.18 68.98 70.22 69.83 68.37

TABLE IV
ACCURACY (%) OF VERTEX CLASSIFICATION ON WIKI

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 49.46 52.35 53.23 54.65 54.74 55.92 56.14 53.91 51.90
AdvCaching-GAT 50.54 53.73 55.23 56.21 56.68 57.61 58.25 56.03 56.12
GCN 35.06 40.23 41.92 41.44 | 42.56 43.35 44.18 42.62 37.34

AdvCaching-GCN 35.47 41.84 43.17 43.80 45.64 46.88 | 46.26 46.57 46.47

GraphSAGE-mean 27.86 31.39 32.30 32.64 34.33 34.20 34.35 34.10 28.22
AdvCaching-mean 28.36 | 33.21 3533 | 35.62 | 36.24 | 36.49 | 3837 | 37.01 36.51

GraphSAGE-LSTM 42.08 | 46.05 47.03 46.99 49.38 49.58 48.48 45.95 44.39
AdvCaching-LSTM 39.68 46.31 48.28 48.99 51.70 52.81 53.60 53.85 50.62

GraphSAGE-maxpool 25.81 29.09 31.12 31.45 31.90 31.92 33.15 31.08 32.49
AdvCaching-maxpool | 27.32 28.93 31.48 32.37 32.66 35.73 35.12 31.92 36.29

GraphSAGE-meanpool 42.17 44.43 45.37 45.88 47.05 46.78 47.78 45.74 43.98
AdvCaching-meanpool | 42.03 48.49 49.29 49.27 49.88 51.66 5291 51.35 47.30

TABLE V
ACCURACY (%) OF VERTEX CLASSIFICATION ON DBLP_C4

% Label Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
GAT 72.37 73.18 73.79 73.72 73.81 73.54 73.69 73.29 73.15
AdvCaching-GAT 72.65 73.42 73.94 74.29 74.38 74.51 74.76 74.19 74.56
GCN 64.04 65.07 65.80 65.94 66.25 66.32 66.90 66.40 65.09

AdvCaching-GCN 67.81 68.60 | 69.12 | 69.39 | 6949 | 69.15 | 69.50 | 69.59 | 69.66

GraphSAGE-mean 59.56 60.28 60.71 61.04 61.16 60.82 61.72 61.75 62.44
AdvCaching-mean 64.48 64.62 65.10 65.34 65.35 65.37 65.64 65.84 65.99

GraphSAGE-LSTM 63.62 64.55 65.13 65.49 65.47 65.20 | 65.55 64.82 64.02
AdvCaching-LSTM 66.24 | 66.97 | 67.89 68.23 | 68.35 | 68.18 | 68.47 | 68.58 68.98

GraphSAGE-maxpool 64.16 64.24 64.69 65.00 64.99 64.72 65.25 65.08 64.69
AdvCaching-maxpool | 66.41 66.61 67.02 67.55 67.48 67.56 67.83 67.87 68.13

GraphSAGE-meanpool | 62.38 62.79 63.14 63.68 63.79 63.61 63.86 63.92 63.23
AdvCaching-meanpool | 68.17 69.13 69.59 69.92 70.19 70.23 70.61 70.13 70.16
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Fig. 3. Convergence analysis. We report the performance of GAT, GCN, GraphSAGE-mean, and our proposed models on Cora, Citeseer, Wiki, and DBLP_C4,
respectively. In general, all models achieve convergence before 40 epochs. (a) Cora. (b) Citeseer. (c) Wiki. (d) DBLP_C4.
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proposed AdvCaching method can produce positive results on
GCN-based models in two aspects: making better performance
contributions and less complicating the optimization process
of the original models.

E. Convergence Analysis

In this section, we perform the convergence analysis of
models. Fig. 3 shows the influence of epochs on the loss
of algorithms during the pretraining. We report the perfor-
mance of GAT, GCN, GraphSAGE-mean, and our proposed
models on Cora, Citeseer, Wiki, and DBLP_C4, respectively.
From Fig. 3, we can see that most of the models obtain
dismissing loss after 25 epochs and all models achieve con-
vergence at or before the 40th epoch. Note that we use
the converged node embeddings in the above evaluation of
vertex classification. Besides, the values of the pretraining
loss would not be directly related to the downstream clas-
sification performance because the embeddings of models
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Ablation study of methods in terms of execution time and classification accuracy on the Citeseer dataset.

may be oversmooth and thus can obtain smaller pretraining
loss.

FE. Execution Time and Classification Performance Analysis
To perform an ablation study, we make a comparison
of methods in terms of execution time and classification
accuracy on Cora, Citeseer, Wiki, and DBLP. Specifically,
we compare GAT, GCN, and GraphSAGE-mean with our
proposed methods with and without caching scheme, as shown
in Figs. 4-7. Generally, the average execution time of our
methods is 2.18, 2.37, 2.82, and 2.79 times comparing with
the original methods on four datasets, respectively. In contrast,
the proposed methods without caching scheme are 101, 131,
143, and 150 times over the original ones, which demonstrates
the effectiveness of the caching design that can obtain com-
petitive execution time compared with the original networks.
Moreover, we can observe that the accuracy performance of
our methods can achieve 4.81%, 2.76%, 6.42%, and 4.16%
improvements over the original methods, while the methods
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Fig. 8.  We use AdvCaching-mean on the Citeseer dataset for the evaluation of parameter influence. (a) Accuracy and runtime performance with respect to

the cache size. Here, we set Ni = N, and report its average classification performance with training ratios from 10% to 90%. (b) We vary N1 or N2 given
N2 =10 or N1 = 10 to evaluate the classification accuracy in terms of cache sizes. (c) We take both N1 and N2 as axes by continuously varying their
numbers in {10, 15, 20, 25, 30} to evaluate how they influence the final classification accuracy.

without caching scheme drop by 2.81%, 3.07%, 2.74%, and
6.12% of accuracy comparing with the original ones. We con-
jecture that the reason of performance degradation for methods
without caching is that computing all vertices for generating
negative samples at each step is time-consuming and more
likely to fall into the local optimum. In general, our method
makes improvements over previous methods coming at an
acceptable computational cost.

G. Parameter Sensitivity

Fig. 8 shows the influence of the cache size on the
accuracy and runtime performances of our proposed method.
Here, we adopt AdvCaching-mean on the Citeseer dataset

for the evaluation of the parameter influence. First, as shown
in Fig. 8(a), we let the embedded cache size N; equal to the
temporary cache size N,. From this figure, we can observe
that the runtime of the proposed method is approximately
linear to the cache size. Meanwhile, the accuracy performance
fluctuates along with the increase of the cache size and reaches
the bottom when Ny = N, = 30. Then, we vary the cache size
N1 or N2 given N2 = 10 or N1 = 10 to further evaluate the
accuracy performance of cache size, as shown in Fig. 8(b).
The performance lines are normally stable. In general, our
model is generally robust to the cache size settings. Moreover,
we try to evaluate how continuously changing N1 or N2 will
influence the final accuracy. As shown in Fig. 8(c), we take
both N1 and N2 as the axes by varying their numbers in
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{10, 15, 20, 25, 30}. We can observe that the proposed method
achieves the best classification performance when N1 = 20
and N2 = 15.

V. RELATED WORK

Since we propose adversarial caching training for incorpo-
rating GCN-based models into NRL, our work is related to
the following three aspects.

A. Network Representation Learning

NRL, i.e., network embedding, learns to represent graph
vertices in low-dimensional vectors. Following the success
of word embedding [10], DeepWalk [2] is proposed to
perform representation learning by applying the SkipGram
model [10] on the generated random walks. Subsequent
improved algorithms, such as LINE [5], Node2vec [3], and
PolyDeepwalk [23], also achieve breakthroughs. However,
these methods suffer from computational inefficiency because
no parameters are shared between nodes in the encoder [24].
Besides, they only focus on learning representation from the
local connectivity of vertices (i.e., neighbors) but ignore the
vertex information propagation guided by the graph structure.

B. Graph Neural Networks (GNNs)

GNNs motivated by CNNs [25] are proposed to collectively
aggregate information from graph structures. In recent years,
models, such as GCN [6] and its variant GAT [8], have
shown ground-breaking performance on many tasks, including
NRL. Compared with the previous models [2], [3], [5] men-
tioned before, GCN can jointly consider the local connectivity
and global consistency on graphs. Based on the fundamen-
tal theory of GCN, more variants are proposed, including
GraphSAGE [7], FastGCN [9], DGCN [26], and HAN [27].
Among them, PinSage [28] incorporates GraphSAGE and
achieves the largest application of deep graph embeddings,
which paves the way for a new generation of web-scale
recommender systems. Our proposed method can be applied
to GraphSAGE and achieve better performances in NRL as
shown in the experiments, which demonstrates that our work
is worth investigating. Note that there are many other fancy
graph-based models such as [29] and [30], but we do not
consider them here, because these models do not adopt NS
for unsupervised representation learning.

C. Generative Adversarial Network

GAN [11] recently draws a lot of attention for its promis-
ing performances in various applications [31]. For example,
KBGAN [12] and IGAN [13] propose to incorporate GAN
for NS in knowledge graph learning. Then, NSCaching [32]
further proposes an efficient method to improve its sampling
way. Our work is inspired by these models but with notable
differences. The essential distinction is that the assumption
of NRL that two connected vertices should be similar and
close in embedding space does not hold in the knowledge
graph. In general, to the best of our knowledge, there is
no practice of incorporating adversarial training of modeling
negative samples into GCN for NRL.

VI. CONCLUSION

In this article, we propose an adversarial training method,
called AdvCaching, for unsupervised inductive NRL on
large-scale networks. Though GCN and its variants show
effective performance in NRL, they may suffer from a gra-
dient vanishing problem when adopting the NS method for
optimization. Instead of generating negative vertices from a
uniform sampler, we want to keep track of the dynamic
negative sample distributions by leveraging GAN. Specifically,
in AdvCaching, we adopt a discriminator that contains original
complex neural networks of the base models and use a genera-
tor that has fewer parameters compared with the discriminator
to model negative sample distributions. To balance efficiency
and effectiveness, we further design an adversarial caching
scheme with sampling and updating strategies that has a wide
exploration of vertex connectivity while considering training
costs. Besides, since GraphSAGE achieves great success in
practical applications, we present the core idea of our work by
using it as the base model. As a principle, AdvCaching can
also be applied to extend other GCN-based models. Exper-
iments on real-world datasets demonstrate that AdvCaching
can achieve significant improvements over the state-of-the-art
models, which validates the effectiveness of our proposed
method.
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