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A Multi-Modal Multi-Expert Framework for Pain
Assessment in Postoperative Children

Zequan Liang
and Jianming Lv

Abstract—Automatic pain assessment in postoperative children
is crucial for monitoring their health and preventing potential
complications. However, the automatic pain assessment still faces
the following challenges. Firstly, the individual variation of painful
expressions in children enhances the difficulty of mapping diverse
features of expressions to pain scores accurately. Secondly, the im-
balanced label distribution caused by abundant non-painful sam-
ples usually makes the model more likely to predict an unexpectedly
lower pain score. To address the above challenges, we propose
a novel multi-modal multi-expert framework, namely MMF, for
postoperative pain assessment in children. Specifically, the samples
are clustered in each modality to train multiple expert models,
each focusing on a smaller feature subspace for easier regression of
pain scores. Meanwhile, some expert models are allocated to rare
painful samples to relieve the side effects caused by the imbalanced
distribution of labels. Moreover, a confidence-based integration of
multi-modal features from multiple experts is made to achieve a
more accurate final prediction. Experimental results show that
MMF exhibits superior accuracy of pain assessment on the multi-
modal pain database collected from postoperative children by us.
In particular, MMF can achieve the mean absolute error (MAE) of
1.03 and the Pearson correlation coefficient (PCC) of 0.88.

Index Terms—Confidence, multi-expert, multi-modal, pain
assessment, postoperative children.
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I. INTRODUCTION

OSTOPERATIVE pain commonly occurs for underlying
P illnesses or improper surgical procedures. In the field of
clinical medicine, pain assessment is critical for monitoring
patient health and preventing potential complications [1]. This
is particularly important for children who may not be able to
verbally inform their pain levels [2]. The pain scales are com-
monly used tools for pain assessment in children. In particular,
the Visual Analog Scale (VAS) [3] and the Wong-Baker FACES
Pain Rating Scale [4] require children to self-report their pain
levels, which rely on children’s memory and are not in real-time.
The Face, Legs, Activity, Cry, Consolability (FLACC) scale [5],
relies on the observations by healthcare professionals to assess
pain levels in real-time. However, this approach is subject to
observer bias and requires significant human resources. To im-
prove the objectivity and efficiency of pain assessment, the use of
artificial intelligence for automatic pain assessment has become
increasingly important.

The field of automatic pain assessment is developing with
the construction of several pain databases, such as the UNBC-
McMaster Shoulder Pain Database [6] and the BioVid Heat
Pain Database [7]. The former only contains facial expressions
and the latter includes multi-modal information, including facial
expressions and biological metrics, which record the reactions
during stimulation. However, these databases solely focus on
adults and lack audio information. As for children, vocal expres-
sion is also essential information when they cry unconsciously
due to their lower pain tolerance compared to adults. The level
of pain is relevant to the loudness and duration of their cries [8].
The Infant Cry Signals Database (IIIT-S ICSD) [9] records
audio cry samples from 33 infants for pain analysis. Recently,
some researchers integrated more signals such as biological
metrics [10] and body behavior [11] to support multi-modal pain
assessment. The fusion of multiple modalities usually leads to
higher accuracy in pain assessment [12]. More and more pain
databases include different modalities, as detailed in the survey
by Werner et al. [13].

Despite the rapid development of automatic pain assessment,
it still faces some critical challenges: 1) Individual variation
of painful expressions makes it hard to learn the correct map-
ping between the diverse visual features and pain scores [14],
especially for the models trained on a small labeled database.
Fig. 1 shows an example of the facial feature space, where
the features with the same pain label (indicated with the same
color) are scattered in different regions, representing different
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Fig. 1. T-SNE plots of the feature vectors for facial expressions in the MPP
Database. Each point represents the facial feature vector of a sample, and the
color of a point indicates the pain score of the sample.

facial expressions. 2) Imbalanced distribution of pain scores is
inevitable in the construction of a clinical database. Real clinical
scenarios usually have a limited number of patients experiencing
severe pain [15]. The model trained on the whole database can
be easily affected by abundant non-painful samples, leading to
the high possibility of predicting lower pain scores. 3) Shortage
of multi-modal pain databases for postoperative children.
Many pain databases either focus solely on adults [6], [7] or
contain only uni-modal information for children [9], [16]. Al-
though the YouTube database [17] includes videos of 142 infants
in pain during injections, it has shaky scenes and lacks consistent
focus on infants’ faces.

To address the above challenges, we propose a novel multi-
modal multi-expert framework, namely MMF, for automatic
postoperative pain assessment in children. MMF deploys mul-
tiple expert models to learn diverse multi-modal features and
measure the confidence of an expert based on the distance be-
tween the test sample to its prototype learned in the training set.
Each expert focuses on a relatively smaller cluster in the feature
subspace and a confidence-based integration of all experts is
made to generate the final decision. Meanwhile, some experts
are allocated to rare painful samples, so as to avoid over-fitting
to the abundant non-painful ones. Furthermore, a multi-modal
pain database for children was collected and used for compre-
hensive performance analysis, which showed the effectiveness
and efficiency of MMF.

In summary, the contributions of this paper are as follows:

® We introduce a novel multi-modal multi-expert Frame-

work, namely MMF, for accurate pain assessment in post-
operative children. Each expert is trained to make predic-
tions accurately in a smaller feature subspace, so as to
relieve the negative influence of the individual variation
of painful expressions.

® We propose a prototype based method to measure the

confidence of each expert and integrate the multi-level
information, including the middle features and prediction
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results, from multiple experts in different modalities for
the final prediction of pain scores.

® We constructed a multi-modal pain database for postoper-
ative children, which contains the facial and vocal expres-
sions from 701 individual video samples, to validate the
effectiveness of our framework.

II. RELATED WORK

A. Multi-Modal Pain Assessment

Multi-modal fusion is an essential aspect of artificial intelli-
gence, where information processed by computers is combined
to generate more accurate predictions through computer mod-
els [18]. Some studies about automatic pain assessment have em-
ployed multi-modal fusion techniques to improve the accuracy
of pain-level classification. For example, Thiam et al. [19] used
arandom forest to perform both feature-level and decision-level
fusion on the Sense Emotion Database [20] for multiple modali-
ties. They extracted head descriptors and Local Binary Pattern on
Three Orthogonal Planes (LBP-TOP) [21] calculators from the
video. Classical statistical methods were also used to extract fea-
ture values of biological metrics on a certain time window. The
fusion experiments showed that multi-modal fusion improved
performance compared to each modality individually. Zamzmi
et al. [22] trained models separately for facial expressions,
body movements, and physiological signals, extracting features
similar to the previous method. They then used a simple majority
voting method to combine multi-modal predictions into a pain
indicator, following the decision-level fusion method. Kéchele
et al. [23] extracted multi-modal features based on the BioVid
Database and proposed an adaptive confidence algorithm to
weigh the contributions of each modality based on their reli-
ability.

However, due to the limited amount of data available, the
above classification models were trained on a small number of
labeled samples (usually not more than 200 individuals) [6], [7].
The individual variation of painful expression usually makes
it difficult for these models to generalize. Furthermore, these
models that are designed for healthy adults who endure tem-
porary stimulation are not sufficiently qualified to be used for
multi-modal pain assessment in postoperative children.

B. Multi-Expert Framework

The multi-expert framework was first introduced as the
Mixture-of-Experts (MoE) concept by Michael et al. [24] and
has been widely applied in the field of artificial intelligence for
over 30 years. This framework primarily employs multiple dis-
tinct models to learn from different subsets of training samples,
with a gating network determining which data should be trained
by which model.

Recently, alot of efforts have been made to expand the concept
of the multi-expert framework. For instance, Shazeer et al. [25]
proposed the Sparsely-Gated MoE, which activates only a few
experts from a large pool to improve computational efficiency.
They utilized the Top-K sampling strategy and softmax calcula-
tion to limit the number of experts that data passes through while
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TABLE I

ANNOTATIONS FOR SYMBOLS USED IN OUR METHODOLOGY
Symbol  Annotation
N the number of samples, ¢ € [1, N]
T the length of a sequence, ¢t € [1,7]
m the type of modality from face or voice, m € {F,V}
Yi the ground-truth pain score of the i sample
xm the frame sequence extracted from the it sample
E™ the feature sequence extracted from X"
i the temporal feature extracted from E!™ by BiLSTM
Km the number of clusters in the modality m
ct the center of the k' cluster in the modality m
o the set of the feature vectors in the k*" cluster
fim the feature vector of the i* sample in the prototype space
cm the center of the k‘" cluster in the prototype space
D the dimension of feature space
P the dimension of prototype space
o the prototype of the k*" cluster

ik the confidence for the k' expert

viy the pain score of the i*" sample predicted by the k" expert
v the feature extracted by the k" expert in the modality m
s the fusion pain score of the i*” sample in the modality m
rit the fusion feature of the i sample in the modality m
R; the final fusion feature of the i*” sample
Si the final prediction of the pain score for the i*" sample

balancing the gating weights to ensure that each expert is valu-
able. Dmitry Lepikhin et al. [26] proposed GShard that extended
the MoE concept to Transformers and employed a Top-2 gating
network following the sparsing method. Basil et al. [27] later
proposed the Language-Image Mixture of Experts (LIMoE),
which uses a sparse mixture of experts to simultaneously process
both images and text for multi-modal retrieval tasks. Most of
the above multi-expert methods are designed for single-modal
data classification and operate on the entire database. In this
paper, we propose a multi-modal multi-expert framework for
pain assessment.

III. TASK DEFINITION

In this paper, we propose a method for assessing pain levels by
regressing a pain score from video data that captures both facial
and vocal information of postoperative children. The i*" video
in the database of NV videos is preprocessed to obtain an image
frame sequence X/ = {xfy, [, ..., } and a vocal frame
sequence X" = {x}y,z},..., o)}, where T represents the
sequence length. The ground-truth pain score of the i*”* video is
denoted by y;, which corresponds to the average FLACC score
assessed by medical professionals. The pain assessment model
generates a prediction score .S; that approximates y; as closely as
possible using both modalities. A list of annotations for symbols
used in our methodology is provided in Table I.

IV. METHODS
A. Framework Overview

As shown in Fig. 2, MMF mainly consists of three steps.
Firstly, each input video is preprocessed into a facial frame
sequence X/ and a vocal frame sequence X', and the features
of these sequences are extracted. Secondly, the sequences are
clustered based on the similarity of their features and multiple
experts are trained on these clusters in each modality. Thirdly,
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prototype-based confidence is adopted to weigh the experts in
the fusion of the final decision, where the prototype indicates
the typical features of the samples learned by the expert. Each
step will be detailed in the following sections.

B. Feature Extraction

Each input file contains a 7" seconds video of postoperative
children, and it is divided into 7' image segments and audio
segments according to the order of frames.

From each image segment, a single frame is randomly se-
lected. As aresult, a sequence of 1" frames is achieved for each
video. Each frame contains an RGB image of a child lying in bed,
expressing comfort or discomfort through facial expressions.
A trained stacked hourglass network [28] is utilized to detect
and extract the child’s face from the frame. In the instances
where other medical persons are present in the video, only the
largest face is captured and tracked using the Intersection over
Union (IOU) compared with the previous frame. This results in
a sequence of facial frames X/ = {xf .+ for the target patient
as shown in Fig. 2, where i € [1, N] indicates the i*" video out
of N,and ¢ € [1,T] represents the video timestamp out of T'. A
ResNet18 model [29] pre-trained on the CK+ face database [30]
is employed to extract the features from each facial frame, so as
to achieve a sequence EY = {el',} of facial features for each
video. '

Meanwhile, for each audio segment, the Mel Frequency Cep-
strum Coefficients (MFCC) [31] are extracted and transformed
into a frequency-time spectrogram using the librosa [32] python
package. This results in a sequence of spectrograms X =
{x},} as shown in Fig. 2. A ResNet-18 model is then utilized
to extract the features from each 2D spectrogram, resulting in a
sequence EY = {e},} of vocal features for each video.

To extract the temporal features of human expressions, we
employ the Bidirectional Long Short-Term Memory (BiL-
STM) [33] on the above sequence E™ = {e]",} where m €
{F,V} as follows: '

" = BiLSTM (E") (1)

The temporal features /™ (m € {F, V'}) are then mapped to the
pain score by the linear projection:

ym = (w4 em )

where W™, f* € RY and y/™,b™ € R. The feature extraction
model is optimized by minimizing the MSE (Mean Squared
Error) loss as follows:

1 N
m o im2
Emse - N ; (yz Yi ) (3)

where y; represents the ground-truth pain score of the i*" video,
and y/ represents the predicted pain score of the feature ex-

traction model.

C. Training of Multiple Experts

To address the challenge of individual variation of painful
expressions, multiple expert models are trained on the set of
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Fig. 2.

The MMF mainly consists of three steps: 1) Preprocess information and extract features from different data modalities; 2) Cluster samples based on their

features, and train the multi-experts on these sample clusters; 3) Generate a prototype feature of each sample cluster and calculate the expert’s confidence, which

is used for the final multi-modal multi-expert fusion.

feature vectors. Each expert is trained and verified in a smaller
cluster of samples sharing similar features, and tends to learn
more consistent knowledge to make easier regression of pain
scores. The details of the clustering algorithm and the training
procedure of multiple experts will be illustrated in the following
subsections.

1) Clustering in the Feature Space: In the case of regression
tasks, the extracted features { f/" } typically exhibit a continuous
distribution with a band-like shape as shown in Fig. 1, making
it difficult to partition them into distinct clusters. We propose a
drag-push clustering method to address this issue.

A hyperparameter K, is set to represent the desired number
of clusters for modality m. Firstly, K,,, vectors {c]'|1 <k <
K, } are randomly selected to serve as the centers of the clusters,
where ¢}' € RP. For each feature vector £, the Euclidean
distance to each center ¢;* is calculated to determine its cluster
assignment.

Specifically, f™ is assigned to the k'*" cluster, where

K = argmin (|| f™ — i*ll,) “)
kE[l,Km]

It is also denoted as f/™ € CJ7?, where CJ7 indicates the k'*"
cluster in the feature space.

Secondly, we optimize the centers of the clusters by dragging
each center ¢ towards the feature vectors in the same cluster

C}" and pushing it away from the ones in the other clusters. This
is achieved by minimizing the sum of all Euclidean distances
between ¢} and f/* € C}*, while maximizing the sum of all
Euclidean distances between ¢}* and f/” ¢ C}". The centers
{c}"} are optimized by minimizing the following loss function:

1 N Kn
fe = 2 D _[FYiklog (G (£, ¢})

1=1 k=1
— (1=} log (1= G (f", )] ®)

where
G(x,y) = exp (= ||z —yll,) (6)
m 1 it fmecm
= {0 it fo g ci @

Here G(x, y) indicates the Gaussian similarity, which measures
the distance between feature vectors and projects the range of
values into the interval (0,1]. By minimizing L£},, the trainable
centers {c}" } shift within the feature space { ;" }, resulting in the
generation of clusters based on (4). The corresponding samples
are also grouped into several clusters for the following training
of the multi-expert model.

2) Multi-Expert Training: For each cluster C}"*, one expert
model is trained based on the samples of the cluster to predict
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pain scores. Following the similar pipeline of (1~3), the k" (1 <
k < K,,) expert model applies the BILSTM model to extract the
temporal features and maps them into the pain score by the linear
projection as follows:

v = BiLSTM(E™) 8)
Y = (Wi o+ o 9)

where v}, Wi € RP, Yy, byt € R. The model is optimized
by minimizing the following loss function:

m 1 - rm 2
‘Cmse = N Z (yz - yi7k> (10)
i=1

D. Multi-Modal Multi-Expert Fusion

In the testing phase of a multi-expert framework, it is neces-
sary to determine which experts are best suited to evaluate an
unseen test sample. We define the confidence of each expert by
measuring the similarity between the test sample and the typical
sample of its training set, namely the prototype as defined in [34].
While the test sample is more similar to the training samples of
the expert model, it is more possible to make the correct decision.

1) Gaussian Prototype Extraction: The simplest way to de-
fine the prototype of the k(1 < k < K,,) expert model is
to choose the center ¢ of the corresponding cluster, which
includes the training sample of the model. However, as observed
in Fig. 1, the feature space typically exhibits a non-Gaussian
manifold structure, which makes it difficult to measure the
similarity between the prototype and other test samples. Inspired
by our previous work [34], we propose a Gaussian prototype
extraction procedure, which transforms the feature space into a
prototype space to achieve a more compact Gaussian distribution
and measure the similarity with the prototype based on the
Gaussian similarity.

Firstly, we apply a linear projection to transform the original
feature space into a prototype space. In particular, for any orig-
inal feature vector f/”, the new vector f/”* with new dimension
P in the prototype space is achieved as follows:

[t =W 4o (11)

where W, € R”*P and f/™, b7 € R, In a similar way,
each cluster center ¢* € RP is also projected into ¢j* € RY.
Both {f{"™} and {c¢}*} are further optimized by minimizing the
following loss function:

N K
m 1 ~ m m Jm
‘Cpro = N Z Z[iyvi,k IOg (G (fz/ 7C/k ))
i=1 k=1

(- ¥W)leg(L- G M)] (2)

The optimization based on (12) may drag the feature vectors
belonging to the same cluster towards the center, and push
them away from other clusters, which leads to a more compact
Gaussian distribution of the prototype space. The prototype of
the k'" cluster is defined as p{* = (u2*, o}*), which contains the
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Fig. 3. T-SNE plots of feature vectors and prototypes in the prototype space.
Each point represents the facial feature vector of a sample, and the color of a
point indicates the pain score of the sample. For a test feature, the Gaussian
distances from different prototypes are calculated.

mean value ;" and variance o} of the vectors in the clusters:

N
1
M= e D VIR (13)
G =

1
7

N
o = e SOV - i) o (I - u) (14)
=1

where |C]*| denotes the cardinality of the set C}", and ©®
indicates the element-by-element Hadamard product.

While 17 effectively represents a typical sample in a cluster,
it neglects the distribution of the cluster. As an instance shown in
Fig. 3, although distances from the test feature to the centers of
the clusters Cy and C5 are equal, the distribution of C1 is wider
than that of Cs. As a result, the test feature should be closer
to Cy. This challenge can be addressed by incorporating 07",
which represents the variance of a cluster, into the measurement
of the similarity with the prototypes.

2) Confidence-Based Fusion: After achieving the prototype
Pt = (i, o) of the k*" expert model, the confidence of the
model to judge a test sample f/™ can be defined based on the

[ ey

Gaussian similarity:
m V 7k 2
fim—mid

wi’k - 0
m
§ k=1 exp (— ‘

s)

J

which is computed based on the Gaussian similarity between
f/™ and the center p}* of a prototype, normalized by o7}". That
is, the higher similarity between f/™ and the prototype of the
training set, the higher possibility that the k' expert can make
correct prediction.

As shown in Fig. 2, for each modality m, the pain score s}
is predicted by weighted summing the results from multiple
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experts based on their confidence:

K,
s =) wlul (16)
k=1

Meanwhile, based on the confidence measurement from (15),
the feature vectors v’ (8) of all experts in modality m are
combined to form a fusion feature r;"*:

Ko,
m o m o,.m
T —§ W; 1Y k
k=1

Subsequently, the fusion features 7" of all modalities are con-
catenated to fuse the information from all modalities:

R; = concat {r]* | m e {F,V}}

a7

(18)

Finally, the final predicted score of MMF is obtained as
follows:

S; =WiR; +bg (19)

where W, € R%P and by € R. They are both trained by mini-
mizing the MSE loss:

N
= (- 8 (20)
mse ~ N Yi [
i=1

V. RESULTS
A. Database Setting

In collaboration with a pediatric hospital, Guangzhou Women
and Children’s Medical Center, we have collected the Multi-
modal Postoperative Pain database (M P P) from postoperative
children. To promote data collection, a smartphone application
was created to enable the easy uploading of videos capturing
children’s facial and vocal expressions. Additionally, a web-
based platform was established to allow multiple doctors to log
in and independently assess the FLACC scores of video samples
and generate the average labels of scores.

Until now, our database contains 701 valid video samples with
accompanying audio from various patients, which we call the
MPP Database. Their labels are averaged by several independent
FLACC scores, evaluated by 1 to 4 medical doctors. Some scores
are based on fewer than 4 doctors due to the absence of some
doctors.

The FLACC scale assesses five behavioral components (Face,
Legs, Activity, Cry, Consolability) to estimate pain intensity,
with each component scored from 0 to 2, summing to a total
score ranging from O to 10. Although the FLACC has potential
observer bias, it was chosen for this study due to its relevance
and established use in pediatric pain assessment [5].

A detailed analysis of the FLACC scale’s reliability and
consistency in our database is provided in Table II. It shows that
multiple FLACC assessments are reliable and consistent because
all average Intraclass Correlation Coefficients and Cronbach’s
alpha values exceed 0.85 (ICC,a > 0.85) with a significance
level of p < 0.001.

The average FLACC labels of each sample follow the distri-
bution statically shown in Fig. 4. As illustrated, over 40% of

Fig. 4.

2833

TABLE II
THE FLACC SCALE RATINGS OF THE MPP DATABASE

Raters  Samples  Proportion  ICC a
1 63 9.0% - -
2 278 39.7% 0.865 0.886
3 295 42.0% 0.904 0.923
4 65 9.3% 0.925 0.942
——  density
40% (| percentage

[
50
<
8
5

o
9 20%
3
{s%

6 10

pain score

The distribution of pain scores in the MPP Database. The blue bars

represent the percentage of the samples falling within specific score ranges,
while the purple line depicts the Kernel Density Estimate (KDE) plot based on
the overall distribution of pain scores.

TABLE III
DETAILS OF THE MPP DATABASE

Characteristic Value
Number of patients 701
Sex, female/male 204/497

4 (3-6 [0-15])
17 (14-23 [5-71])
59 (51-60 [2-95])

Age, year
Body weight, kg
Video time, s

Pain label 1.5 (0-6 [0-10])

Surgery categories
-ENT 306 (43.6%)
-Urology 187 (26.7%)
-General 23 (3.3%)
-Orthopedic 48 (6.8%)
-Thoracic 11 (1.6%)
-Oral 58 (8.3%)
-other 68 (9.7%)

Data presented as median (interquartile
range [total range]) or number (propor-
tion). ENT = Ear, Nose, and Throat.

samples fall within the 0-1 score range. It shows that the label
distribution is imbalanced, with a greater number of non-painful
samples than painful ones. We have constructed this database,
referred to as the MPP Database, for the purpose of multi-modal
postoperative pain assessment in children.

More details of the MPP Database are presented in Table III.

B. Evaluation Metrics

We treated the pain assessment as a regression task to ap-
proximate the mean score. Similar to the Mean Squared Error
(MSE) we adopted as the loss function for the model training
shown in (3), for a regression task, two important evaluation
metrics are the Mean Absolute Error (MAE) and the Root Mean
Squared Error (RMSE) measuring the error of the predicted
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score compared to the ground truth:

N
1
MAE = — ;— P 21
N;:lly, vl 1)
1 N
. L prey2
RMSE = NE (i —y™) (22)

i=1

where N is the number of samples, y; is the ground truth, and
y"“ is the predicted score measured as aresult for the i* sample.

In addition to the aforementioned metric, it is crucial to
evaluate the similarity of the linear distribution between pre-
dicted scores and ground truth values. The Pearson Correlation
Coefficient (PCC) is an effective metric for assessing the linear

correlation between these two sets of data:
cov(Y,YPre)

Oy Oypre

PCC = (23)

Another measure called Concordance Correlation Coefficient
(CCC) [35] can be used to evaluate both correlation and consis-
tency between them:

cel =

2cov(Y,YPre)
)z (24)

05 + 0% e + (Hy — 1y

where cov(Y,Y?"®) represents the covariance of the set of
ground truths Y and the set of predicted scores Y?"¢, u and
o represent the mean value and the variance.

Following the evaluation of research [36], we adopted these
four evaluation metrics including MAE, RMSE, PCC, and CCC,
to assess the performance of a model in predicting pain scores
for this regression task. A better model will have lower MAE
and RMSE values and higher PCC and CCC values.

C. Basic Experiment Configurations

Experiments are conducted within the Python environment,
utilizing the OpenCV [37] and librosa [32] packages for input
processing, and the PyTorch [38] and scikit-learn [39] packages
for model construction.

From the MPP Database, we preprocessed the facial images
and vocal spectrograms by cropping and resizing them to di-
mensions of 224 x 224 x 3 and 128 x 87 x 1, respectively.
We used 5-fold cross-validation to evaluate our models on this
database.

Our network comprised a ResNetl8 frame extractor and a
BiLSTM temporal extractor. By the way, some cross-attention
blocks were embedded in our BiLSTM [40]. The projections
with all W and b were implemented by MLPs. The feature di-
mension D was set to 128, as determined by the initial settings of
our ResNet18 and BiLSTM extractors. The prototype dimension
P was varied between 2% = 16 and 2% = 256 in the sensitivity
analysis.

The deep learning algorithm for sample clustering based on
features iterated for 1000 epochs, then the prototypes were
fixed after 20 epochs of training. The number of experts in our
framework ranged from 1 to 6, and these experts were trained
for 100 epochs. We employed the Adam optimization with a
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learning rate of 0.001 and L2 regularization weight decay of
0.0001 to drive deep learning.

D. Comparative Experiments

The pain score obtained through (16) serves as the prediction
of our method for a single modality. This method is denoted as
MMF-F for facial modality, or MMF-V for vocal modality. The
final fusion score obtained through (19) is the final prediction of
our method for multiple modalities, and this method is denoted
as MMF-FV.

To evaluate our overall MMF, we compared it with other pain
assessment methods across different modalities. Furthermore,
the main strategies in our framework contain sample clustering
and multi-expert fusion, we also conducted comparative exper-
iments to analyze the effectiveness of these strategies in the
model.

1) Performance of Pain Assessment: Based on our collected
MPP Database, the MMF was employed for several modalities
to finish the pain assessment as a regression task, compared with
other classical algorithms as follows:

® Pseudo-Inverse (Pinv) [41]: This algorithm calculates the
least-squares optimal linear mapping matrix by computing
the pseudo-inverse from feature inputs to ground truths.
The mapping matrix is obtained using training samples and
subsequently applied for the prediction of testing samples.

® Random Forest (RF) [42]: This algorithm builds multiple
decision trees on various samples by randomly selecting
prior attributes, using an averaging strategy to aggregate
the results. In our study, each RF model consists of 100
trees. For node splitting, the Mean Squared Error is used.

o Support Vector Machines (SVM) [43]: This algorithm de-
cides on an optimal hyperplane to divide two categories
for classification or to fit the data points for regression. It
is also called Support Vector Regression (SVR) when used
for regression. In this study, the SVMs utilize the Radial
Basis Function (RBF) kernel to enable nonlinear mapping.

® XGBoost [44]: This algorithm iteratively generates a new
tree model to fit the residuals between the predictions of
the previous iteration’s tree and the actual values. The pre-
dictions from all trees are weighted to provide XGBoost’s
final output. In this study, the XGBoost models consist of
100 trees over 100 iterations, aiming to minimize the Mean
Squared Error in regression tasks.

e Convolutional Recurrent Neural Network (CRNN) [45]:
This is a combination of a Convolutional Neural Network
(CNN) and a Recurrent Neural Network (RNN). The CNN
of ResNetl8 is applied as the feature extractor of a frame,
while the RNN of BiLSTM is applied as the temporal fea-
ture extractor of the entire sequence comprised of previous
frames. It is suitable for facial expressions (F') and vocal
expressions (1) in a video.

o Transformer [48]: Similar to RNN, it is also applied as the
temporal feature extractor of the entire sequence.

o Separated Spatial and Temporal 3D Convolutions with
Gating (S3D-G) [46]: Traditional 3D convolutions han-
dle both spatial and temporal information in videos
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TABLE IV
DIFFERENT PAIN ASSESSMENT METHODS FOR REGRESSION ON THE MPP
DATABASE FOR DIFFERENT MODALITIES

modality method MAE| RMSE| PCCt CCCt
Pinv [41] 1.8859 2.3228 0.6749  0.6085

RF [42] 1.9704 2.5001 0.6034  0.5590

SVR [43] 1.8432 2.3531 0.6671  0.6099

r XGboost [44] 1.9802 2.5867 0.5785  0.5470
CRNN [45] 1.3771 1.9435 0.7866  0.7776

S3D-G [46] 1.4723 2.0716 0.7576  0.7508

PET [47] 1.3381 1.9633 0.7882  0.7821

MMEF 1.2714 1.8565 0.8105 0.8063

Pinv 1.5962 2.0750 0.7566  0.7474

RF 1.4272 1.7586 0.8435 0.7848

SVR 1.4889 1.8700 0.7984 0.7617

v XGboost 1.4860 1.8843 0.7970 0.7672
CRNN 1.4017 19151 0.7902  0.7727

S3D-G 1.4359 2.1356 0.7560  0.7406

PET 1.3950 2.0500 0.7811  0.7615

MMEF 1.2946 1.9441 0.8004 0.7850

Pinv 1.6478 21086  0.7534  0.7500

RF 1.3688 1.7298 0.8372  0.7967

SVR 1.4903 1.8710 0.7983  0.7611

4V XGboost 1.4083 1.8419 0.8147 0.7889
CRNN 1.1078 1.5013 0.8773  0.8696

S3D-G 1.1196 1.5281 0.8729  0.8632

PET 1.1403 1.5943 0.8623  0.8593

MMF 1.0399 1.4587 0.8880 0.8875

F = face, V = voice. | indicates a better model has a lower
value, 1 indicates a better model has a higher value.

simultaneously. S3D-G separates 3D convolutions into
spatial and temporal convolutions and introduces a gating
mechanism for channel attention. In this study, we directly
applied the S3D-G to frame sequences for " and V.

® PET (Pain Estimate Transformer) [47]: This method em-
beds a Bottleneck Attention Module (BAM) [49] into the
ResNet, then uses a Transformer encoder to process tempo-
ral features and predict the pain level. Similar to the S3D-G,
we also directly applied the PET to frame sequences for F’
and V.

For the features input in Pinv, RF, SVR, and XGboost, differ-
ent modalities have their distinct manual extraction methods:

® Face (F'): Manual facial features are extracted using Local

Binary Patterns on Three Orthogonal Planes (LBP-TOP)
features, producing 30-dimensional histograms for three
planes [19].

® Voice (V'): Manual vocal features are extracted using their

Mel-Frequency Cepstral Coefficients (MFCC) features
and transformed into 156-dimensional statistical measures
such as mean, median, and standard deviation [50].

The feature inputs for other deep learning methods such
as CRNN, Transformer, S3D-G, PET, and our MMF can be
automatically extracted by models.

The results of the comparative experiment on the MPP
Database are presented in Table IV. For single F' and multiple
modalities F' + V, our MMF is the best model for all metrics.
However, for V', the MMF doesn’t perform the best on metrics
other than MAE, indicating that it improves facial expressions
more effectively than voice. Additionally, compared to any
single-modal model or other multi-modal fusion methods, MMF
for multiple modalities F' + V' demonstrates superior perfor-
mance in regressive pain assessment.
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Fig.5. MAE performance of MMF on the MPP Database within each specific
score range for different modalities.

Moreover, using the Intraclass Correlation Coefficient (ICC),
95% confidence interval (CI), and its significance level to
compare the baseline CRNN and our MMF, we found that
the CRNN achieves an ICC of 0.931 (95% CI: [0.899,0.952],
p < 0.001), while the MMF achieves an ICC of 0.941 (95% CI.:
[0.941,0.959], p < 0.001). These results show that the MMF
provides higher consistency and reliability between the label
and predicted scores, indicating a statistically significant im-
provement.

As shown in Fig. 5, MMF performs better at lower score labels
compared to higher score labels due to an imbalance caused by
the large presence of non-painful samples. However, the multi-
modal framework alleviates the MAE in the high score range.
Except for a few low score ranges, combining both facial and
vocal modalities results in better performance across different
score labels.

2) Effectiveness of Clustering: In addition to our proposed
drag-push clustering method, which operates on our feature
space, there exist several alternative clustering strategies that
can be employed as substitutes. These include:

® k-means [51]: The k-means algorithm is a widely-used
clustering method that partitions data into K clusters by
minimizing the within-cluster sum of squares. It is a clas-
sical machine-learning technique that can also be applied
to cluster samples based on features without the need for
gradient-based parameter optimization.

e Labels: In terms of the regression task, it can also cluster
samples based on their continuous labels. This approach
sorts the training samples in ascending order of their score
labels to divide theminto K clusters. It encourages multiple
experts to concentrate on distinct levels of pain.

We conducted experiments to evaluate the effectiveness of
these different clustering strategies based on the MPP Database
across various modalities. As shown in Table V, neither the
k-means nor labels-based approaches are as effective as our
proposed method. The k-means approach only updates centers
iteratively, without pushing different sets of feature vectors away
as our loss function does. While the sample clusters formed
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TABLE V
DIFFERENT CLUSTER STRATEGIES IN MMF ON THE MPP DATABASE FOR
DIFFERENT MODALITIES

modality cluster MAE|l RMSE| PCCt CCCt
k-means [51] 1.3636 1.9407  0.7928 0.7894
F labels 1.3536 1.9544  0.7949 0.7917
MMF 1.2714  1.8565 0.8105 0.8063
k-means 1.3883 2.0344 07821 0.7760
1% labels 1.5861 2.1549  0.7582 0.7474
MMF 1.2946 1.9411  0.8004 0.7850
k-means 1.1117 1.5069 0.8764  0.8719
F+V labels 1.0881 1.4915  0.8791 0.8752
MMF 1.0399 1.4587 0.8880  0.8875

TABLE VI

DIFFERENT MULTI-EXPERTS METHODS ON THE MPP DATABASE FOR
DIFFERENT MODALITIES

modality method MAE] RMSE| PCCt CCCt
MoE [24] 1.3438 1.9227 0.7975  0.7846

F SMoE [25] 1.3601 1.9737 0.7896  0.7877
MMF 1.2714 1.8565 0.8105 0.8063

MoE 1.3249 1.9595 0.8001  0.7748

\% SMoE 1.3157 19213  0.7953 0.7843
MMEF 1.2946 1.9411 0.8004  0.7850

MoE 1.1056  1.4813  0.8804 0.8733

F+V SMoE 1.1368  1.5275  0.8723  0.8627
MME 1.0399 1.4587 0.8880 0.8875

by labels are the same for both modalities, it doesn’t consider
the different feature distributions across different modalities.
Overall, these results indicate that our proposed method is more
effective than other cluster strategies.

3) Effectiveness of Multi-Expert Fusion: In contrast to con-
ventional approaches that utilize the entire sample set for training
multiple experts, we proposed our multi-experts framework
based on the distinct regions from the whole database. We
conducted the comparative experiments based on the MPP
Database, using the following multi-expert methods:

® MoE [24]: This approach employs a gating network to
automatically generate learning weights for aggregating
features from multiple experts based on the entire database.
To be fair, we set the number of experts ranges from 2 to 6
to get the best performance of MoE.

o SMoE [25]: Tt indicates the Sparse MoE. This method
builds upon the MoE framework, utilizing a gating network
to assign learning weights. Although increasing expert
capacity, it employs a topK sampling strategy to limit
the number of activated experts. Restricted by the small
amount of our database, the number of experts for each
modality is set to 10. Various topK samplings are tested to
get the best performance of SMoE for fairness, where K
ranges from 2 to 6.

Table VI compares the performance of various multi-expert
methods. It suggests that our multi-expert fusion of MMF is
more accurate in pain assessment compared to MoE and SMoE,
although SMoE possesses a larger capacity of experts.

E. Ablation Studies

MMF for multiple modalities (MMF-FV) comprises MMF-
F and MMF-V. Each of these uni-modal parts can be further
divided into multiple components, including:
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TABLE VII
ABLATION OF MMF FOR FACE MODALITY

MMF-F with metric
ct pro fsn MAE|, RMSE| PCCt CCCt
1.3771 1.9435 0.7866 0.7776
v 1.3667 1.8565 0.8066 0.7945
v v 1.3721 1.8714 0.8017 0.7889
v v 1.3331 1.9283 0.7953 0.7919
v 1.4832 1.9958 0.7769 0.7306
v v v 1.2714 1.8561 0.8105 0.8063
clt = clustering optimization, pro = prototype, fsn =
confidence-based fusion. v'indicates MMF-F is with this
component, while a blank indicates it does not.
TABLE VIII
ABLATION OF MMF FOR VOICE MODALITY
MMF-V with metric
cdt pro fsn MAE| RMSE|] PCCt CCCt
1.4017 1.9151 0.7902  0.7727
v 1.3462 2.0305 0.7893  0.7751
v v 1.3760 2.0884 0.7726  0.7628
v v 1.3318 1.9466 0.7925  0.7843
v 1.3385 1.9029 0.7964  0.7722
v v v 1.2946 1.9441 0.8004 0.7850

® clt: This component represents our sample clustering op-
timization based on the feature space. When removed, the
loss function in (5) is not activated, but the initial random
K sample clusters are still retained according to (4). This
means that sets of feature vectors are still formed by the
nearest features, but their assignment is not optimized for
minimum inner distance.

® pro: This component represents the transformation from
the feature space to the prototype space. When removed,
the loss function in (12) is not activated, and confidence
computation is performed directly on the feature space
without convergence of sets of feature vectors.

e fsn: The confidence-based fusion component. For the uni-
modal part, it represents the fusion of results from different
experts according to (16). For the multi-modal framework,
it represents the fusion of features from different experts
according to (18). When removed, confidence computation
in (15) is not activated, and the previous pro component also
loses its significance for confidence computation. How-
ever, the clustering result of clf remains, allowing for the
training of different experts. In this case, the mean value
of results or features from multiple experts replaces the
weighted-sum value by confidence.

To evaluate the individual contributions of different compo-
nents and modalities to the overall performance of MMF, we
conducted a series of ablation experiments. In these experiments,
we removed different components or uni-modal parts from the
framework and measured their impact on performance using
various metrics.

Tables VII and VIII present the results of ablation experiments
conducted on the MPP for facial (MMF-F) and vocal (MMF-V)
modalities, respectively. These experiments involved the re-
moval of various components of the uni-modal part, including
clt, pro, and fsn. The results indicate that the removal of
any of these components leads to a decrease in performance.
However, the removal of the ¢/t component has a relatively
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Fig. 6.

TABLE IX
ABLATION OF MMF FOR MULTIPLE MODALITIES

MMF-FV MAE| RMSE| PCCt CCCt
without V/ 12714 1.8561  0.8105  0.8063
without F 12946  1.9441  0.8004 0.7850
without clt+pro  1.1754 15331  0.8722  0.8618
without fsn 11261  1.5109 0.8773  0.8727
with all 1.0399 1.4587  0.8880 0.8875

low impact on performance due to the residual effect of the
initial clusters based on the nearest features. This suggests that
even in the absence of optimization via our clustering algorithm,
multiple experts trained on distinct data domains remain crucial
for MMF performance. Furthermore, the ablation results suggest
that the removal of the fsn component has a smaller impact
on performance for the vocal modality compared to the facial
modality. Nonetheless, removing the fsn component still has
a negative impact on other performance metrics apart from
RMSE for the vocal modality. Overall, these results suggest that
all components (clt, pro, and fsn) are essential for achieving
optimal performance in both facial and vocal modalities.

Table IX presents the results of ablation experiments con-
ducted on the MPP for multiple modalities (MMF-FV). These
experiments involved the removal of various components or
modalities from the framework. The results indicate that re-
moving any uni-modal part has a larger impact on performance
compared to removing clt, pro, or fsn components. Moreover,
confidence computation based on clt and pro is more important
than fsn. Overall, these results suggest that both modalities
(F' and V') are essential for achieving optimal performance in
the MMF-FV framework. The smaller components also have an
impact on performance, but their removal has a smaller impact
compared to removing either modality.

F. Sensitivity Analysis

1) The Number of Experts: The number of experts K in the
uni-modal part is a crucial hyperparameter of the MMF. As
illustrated in Fig. 6, we conducted experiments with different
numbers of experts K, ranging from 1 to 6, to analyze the
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Different results with different numbers of experts. (a) Mean Absolute Error (MAE); (b) Pearson Correlation Coefficient (PCC).

performance of MAE and PCC for both MMF-F and MMF-V,
as well as their combination MMF-FV. The performance of
MMF-FV is consistently better than either MMF-F or MMF-V
alone across all numbers of experts. Additionally, as the number
of experts increases, their performances generally improve and
then decline. This suggests that there is an optimal number of
experts for the MMF, and adding more experts may overfit the
smaller amount of training data. As a result, adopting 3 experts
is the best choice for facial expression while choosing 5 experts
is optimal for vocal expression. This suggests that the optimal
number of experts may vary depending on the modality due to
different feature distributions. As MMF-F has a higher effective
improvement than MMF-V, the best result of MMF-FV com-
bined by using the same number of experts for each uni-modal
part is achieved with 3 experts.

To determine the optimal combination of experts for the
uni-modal part with varying values of K, we conducted an
evaluation of the MAE performance of the MMF-FV model
using different combinations of experts for the F' and V' modal-
ities. The results are illustrated in Fig. 7, where deeper shades
of blue correspond to better performance in terms of MAE
and PCC. The performance of either the facial or vocal model
alone is inferior to that of the multi-modal framework. The
lowest MAE of 1.040 is achieved when combining 5 experts
for the facial modality and 3 experts for the vocal modality, as
indicated by the deepest shade of blue. PCC also achieves its
highest value at 0.888 simultaneously. However, increasing the
number of experts beyond this point may result in overfitting
and diminished performance.

2) The Dimension of Prototypes: Another critical hyperpa-
rameter of the MMF is the dimension of the prototypes. Similar
to the previous experiments, we also conducted the sensitivity
analysis on this hyperparameter, exploring prototype dimensions
P ranging from 2% = 16 to 2% = 256. We evaluated the im-
pact on the performance metrics, MAE and PCC, for MMF-
F, MMF-V, and their combined MMF-FV. As illustrated in
Fig. 8, MMF-FV outperforms both MMF-F and MMF-V across
all prototype dimensions. Notably, MMF-FV achieves the best
performance on both MAE and PCC at a prototype dimension
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of 26 = 64, which we have identified as the optimal setting for
this hyperparameter.

G. Case Studies

In Fig. 9, the feature space is depicted with ground truth and
sample cluster results based on the feature space and prototype
space of our proposed method. Itis an instance of MMF-F with 3
experts. The ground truth reveals that a wider space is occupied
by unpainful samples, which are colored blue. MMF employed
deep learning to search for optimal centers to group similar fea-
ture representations together. The sample cluster results of MMF
were similar to those obtained using k-means based on features,
but the performance listed in Table V shows that our method
outperforms k-means. Additionally, each set of feature vectors
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converged to an elliptical shape as a Gaussian distribution in
prototype space, satisfying a rational assumption for confidence
computation. Overall, these results indicate that our clustering
algorithm is a promising method for grouping samples based on
feature distribution.

For the interpretability of the model, we used Grad-
CAM-++[52], a technique for visualizing the regions in an image
that were most relevant for a deep neural network’s prediction, to
analyze the facial features that contributed to pain assessment.
Fig. 10 shows some examples of Grad-CAM++ heatmaps for
different models. We can observe that the baseline model, which
used a single pipeline, mainly focused on the areas around the
eyes and mouth. These are known to be expressive in pain.
However, the first expert model of MMF-F, which was trained
on a subset of data with higher pain scores, paid more attention to
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Fig. 9. T-SNE plots of the feature vectors, including the ground truth and
sample clusters based on feature space and prototype space of the MMF for
modality F'. In the first column, the ground truth is denoted by cool and warm
colors, with warmer colors indicating a higher level of pain. In the second
column, the feature vectors are clustered and displayed in different colors, such
as green, orange, and purple.
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Fig. 10.  Grad-CAM-++ Heatmaps for facial expressions of two samples. Each
sample is a randomly selected frame from a video that is processed by a model
of CNN and RNN to extract pain features. The first row shows the results of
a single-pipeline model without experts, and the second and third rows show
the results of multiple expert models of MMF. The facial regions with warmer
colors indicate higher attention from the model, which means they contribute
more to the pain assessment.

the glabellar wrinkles (the vertical lines between the eyebrows),
the closed eyes, and the nasolabial folds (the creases from the
nose to the mouth corners). The second expert model maintained
attention on the pull-down corners of the mouth and the glabellar
wrinkles in the second sample. These features are consistent with
the Facial Action Coding System (FACS) [53], which defines the
facial muscle movements that correspond to different emotions.
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The result indicates that different experts of MMF are able to
capture various facial expression components and identify more
informative regions than the single pipeline.

H. Computational Cost

Due to the complexity of our multi-step training process,
defining a precise training cost is difficult. However, we can
provide specific details regarding the testing process in our
multi-expert multi-modal pain assessment using the MMF'.

With a sampling rate of 1 frame per second, the MMF averages
0.535 seconds to predict a 60-second video sample consisting of
60 facial frames and corresponding vocal frames, which equates
to approximately 0.009 seconds per frame. The results highlight
the efficiency of the MMF in processing multi-modal data.

VI. CONCLUSION

In conclusion, our proposed MMF demonstrated superior
performance in pain assessment compared to other methods. By
employing multiple experts for each modality, our framework
effectively addresses the challenges of individual variation of
pain expressions and imbalanced label distribution. The pro-
posed framework has potential applications in clinics, where it
can provide objective and efficient pain monitoring for postop-
erative children who cannot communicate their pain verbally.
In the future, we plan to extend our framework to include more
modalities, such as biological metrics and body movements, and
to further improve its performance and interpretability in pain
assessment.
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